Your browser doesn't support javascript.
loading
Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers.
Heckmann, David; Campeau, Anaamika; Lloyd, Colton J; Phaneuf, Patrick V; Hefner, Ying; Carrillo-Terrazas, Marvic; Feist, Adam M; Gonzalez, David J; Palsson, Bernhard O.
Afiliación
  • Heckmann D; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093; david.heckmann@hhu.de palsson@ucsd.edu.
  • Campeau A; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093.
  • Lloyd CJ; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093.
  • Phaneuf PV; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093.
  • Hefner Y; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093.
  • Carrillo-Terrazas M; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093.
  • Feist AM; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093.
  • Gonzalez DJ; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark.
  • Palsson BO; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A ; 117(37): 23182-23190, 2020 09 15.
Article en En | MEDLINE | ID: mdl-32873645
Enzyme turnover numbers (kcats) are essential for a quantitative understanding of cells. Because kcats are traditionally measured in low-throughput assays, they can be inconsistent, labor-intensive to obtain, and can miss in vivo effects. We use a data-driven approach to estimate in vivo kcats using metabolic specialist Escherichia coli strains that resulted from gene knockouts in central metabolism followed by metabolic optimization via laboratory evolution. By combining absolute proteomics with fluxomics data, we find that in vivo kcats are robust against genetic perturbations, suggesting that metabolic adaptation to gene loss is mostly achieved through other mechanisms, like gene-regulatory changes. Combining machine learning and genome-scale metabolic models, we show that the obtained in vivo kcats predict unseen proteomics data with much higher precision than in vitro kcats. The results demonstrate that in vivo kcats can solve the problem of inconsistent and low-coverage parameterizations of genome-scale cellular models.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Escherichia coli Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Escherichia coli Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos