Your browser doesn't support javascript.
loading
Broadband Dynamics of Ubiquitin by Anionic and Cationic Nanoparticle Assisted NMR Spin Relaxation.
Wardenfelt, Stacey; Xiang, Xinyao; Xie, Mouzhe; Yu, Lei; Bruschweiler-Li, Lei; Brüschweiler, Rafael.
Afiliación
  • Wardenfelt S; Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, Ohio, 43210, USA.
  • Xiang X; Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, Ohio, 43210, USA.
  • Xie M; Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, Ohio, 43210, USA.
  • Yu L; Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, Ohio, 43210, USA.
  • Bruschweiler-Li L; Campus Chemical Instrument Center, The Ohio State University, 151 W. Woodruff Ave, Columbus, Ohio, 43210, USA.
  • Brüschweiler R; Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, Ohio, 43210, USA.
Angew Chem Int Ed Engl ; 60(1): 148-152, 2021 01 04.
Article en En | MEDLINE | ID: mdl-32909358
ABSTRACT
The quantitative and comprehensive description of the internal dynamics of proteins is critical for understanding their function. Nanoparticle-assisted 15 N NMR spin relaxation spectroscopy is a new method for the observation of picosecond to microsecond dynamics of proteins when transiently interacting with the surface of the nanoparticles (NPs). The method is applied here to the protein ubiquitin in the presence of anionic and cationic silica NPs (SNPs) of different sizes. The backbone dynamics profiles are reproducible and strikingly similar to each other, indicating that specific protein-SNP interactions are unimportant. The dynamics profiles closely match the sub-nanosecond dynamics S2 values observed by model-free analysis of standard 15 N relaxation of ubiquitin in free solution, indicating that the bulk of the ubiquitin backbone dynamics in solution is confined to sub-nanosecond timescales and, hence, it is dynamically more restrained than previous NMR studies have suggested.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos