Your browser doesn't support javascript.
loading
Reverse-Engineering Neural Networks to Characterize Their Cost Functions.
Isomura, Takuya; Friston, Karl.
Afiliación
  • Isomura T; Brain Intelligence Theory Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan takuya.isomura@riken.jp.
  • Friston K; Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, WC1N 3AR, U.K. k.friston@ucl.ac.uk.
Neural Comput ; 32(11): 2085-2121, 2020 11.
Article en En | MEDLINE | ID: mdl-32946704
This letter considers a class of biologically plausible cost functions for neural networks, where the same cost function is minimized by both neural activity and plasticity. We show that such cost functions can be cast as a variational bound on model evidence under an implicit generative model. Using generative models based on partially observed Markov decision processes (POMDP), we show that neural activity and plasticity perform Bayesian inference and learning, respectively, by maximizing model evidence. Using mathematical and numerical analyses, we establish the formal equivalence between neural network cost functions and variational free energy under some prior beliefs about latent states that generate inputs. These prior beliefs are determined by particular constants (e.g., thresholds) that define the cost function. This means that the Bayes optimal encoding of latent or hidden states is achieved when the network's implicit priors match the process that generates its inputs. This equivalence is potentially important because it suggests that any hyperparameter of a neural network can itself be optimized-by minimization with respect to variational free energy. Furthermore, it enables one to characterize a neural network formally, in terms of its prior beliefs.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Modelos Neurológicos / Modelos Teóricos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Neural Comput Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Modelos Neurológicos / Modelos Teóricos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Neural Comput Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Estados Unidos