Your browser doesn't support javascript.
loading
Development of 3D Printed Drug-Eluting Scaffolds for Preventing Piercing Infection.
Naseri, Emad; Cartmell, Christopher; Saab, Matthew; Kerr, Russell G; Ahmadi, Ali.
Afiliación
  • Naseri E; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
  • Cartmell C; Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
  • Saab M; Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
  • Kerr RG; Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
  • Ahmadi A; Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
Pharmaceutics ; 12(9)2020 Sep 22.
Article en En | MEDLINE | ID: mdl-32971854
ABSTRACT
Herein, novel drug-eluting, bio-absorbable scaffold intended to cover piercing studs is introduced. This "biopierce" will stay in human tissue following piercing, and will slowly release an antimicrobial agent to prevent infection while the wound heals. Nearly 20% of all piercings lead to local infection. Therefore, it is imperative to develop alternative methods of piercing aftercare to prevent infection. Biopierces were made using mupirocin loaded poly-lactic-co-glycolic acid (PLGA) biomaterial ink, and a low-temperature 3D printing technique was used to fabricate the biopierces. Proton nuclear magnetic resonance (1H NMR) spectroscopy was used to confirm the complete removal of the solvent, and liquid chromatography high-resolution mass spectrometry (LC-HRMS) was used to confirm the structural integrity of mupirocin and to quantify the amount of the released drug over time. The efficacy of the biopierces against Staphylococcus aureus, one of the most common piercing-site pathogens, was confirmed over two weeks using in vitro antimicrobial susceptibility testing.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Pharmaceutics Año: 2020 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Pharmaceutics Año: 2020 Tipo del documento: Article País de afiliación: Canadá