Your browser doesn't support javascript.
loading
Supervised Machine-Learning Algorithms in Real-time Prediction of Hypotensive Events.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5468-5471, 2020 07.
Article en En | MEDLINE | ID: mdl-33019217
Hypotension is common in critically ill patients. Early prediction of hypotensive events in the Intensive Care Units (ICUs) allows clinicians to pre-emptively treat the patient and avoid possible organ damage. In this study, we investigate the performance of various supervised machine-learning classification algorithms along with a real-time labeling technique to predict acute hypotensive events in the ICU. It is shown that logistic regression and SVM yield a better combination of specificity, sensitivity and positive predictive value (PPV). Logistic regression is able to predict 85% of events within 30 minutes of their onset with 81% PPV and 96% specificity, while SVM results in 96% specificity, 83% sensitivity and 82% PPV. To further reduce the false alarm rate, we propose a high-level decision-making algorithm that filters isolated false positives identified by the machine-learning algorithms. By implementing this technique, 24% of the false alarms are filtered. This saves 21 hours of medical staff time through 2,560 hours of monitoring and significantly reduces the disturbance caused by alarming monitors.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Automático Supervisado / Hipotensión Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Automático Supervisado / Hipotensión Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos