Your browser doesn't support javascript.
loading
The Clinical Application of the Deep Learning Technique for Predicting Trigger Origins in Patients With Paroxysmal Atrial Fibrillation With Catheter Ablation.
Liu, Chih-Min; Chang, Shih-Lin; Chen, Hung-Hsun; Chen, Wei-Shiang; Lin, Yenn-Jiang; Lo, Li-Wei; Hu, Yu-Feng; Chung, Fa-Po; Chao, Tze-Fan; Tuan, Ta-Chuan; Liao, Jo-Nan; Lin, Chin-Yu; Chang, Ting-Yung; Wu, Cheng-I; Kuo, Ling; Wu, Mei-Han; Chen, Chun-Ku; Chang, Ying-Yueh; Shiu, Yang-Che; Lu, Henry Horng-Shing; Chen, Shih-Ann.
Afiliación
  • Liu CM; Heart Rhythm Center, Division of Cardiology, Department of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., Y.-C.S., S.-A.C.), Taipei Veterans General Hospital, Taiwan.
  • Chang SL; Institute of Clinical Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., C.-K.C., S.-A.C.), National Yang-Ming University, Taipei, Taiwan.
  • Chen HH; Faculty of Medicine, School of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., L.K., M.-H.W., C.-K.C.), National Yang-Ming University, Taipei, Taiwan.
  • Chen WS; Heart Rhythm Center, Division of Cardiology, Department of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., Y.-C.S., S.-A.C.), Taipei Veterans General Hospital, Taiwan.
  • Lin YJ; Institute of Clinical Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., C.-K.C., S.-A.C.), National Yang-Ming University, Taipei, Taiwan.
  • Lo LW; Faculty of Medicine, School of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., L.K., M.-H.W., C.-K.C.), National Yang-Ming University, Taipei, Taiwan.
  • Hu YF; Department of Radiology (M.-H.W., C.-K.C., Y.-Y.C.), Taipei Veterans General Hospital, Taiwan.
  • Chung FP; Center of Teaching and Learning Development (H.-H.C.), National Chiao Tung University, Hsinchu, Taiwan.
  • Chao TF; Institute of Statistics (W.-S.C., H.H.-S.L.), National Chiao Tung University, Hsinchu, Taiwan.
  • Tuan TC; Heart Rhythm Center, Division of Cardiology, Department of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., Y.-C.S., S.-A.C.), Taipei Veterans General Hospital, Taiwan.
  • Liao JN; Institute of Clinical Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., C.-K.C., S.-A.C.), National Yang-Ming University, Taipei, Taiwan.
  • Lin CY; Faculty of Medicine, School of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., L.K., M.-H.W., C.-K.C.), National Yang-Ming University, Taipei, Taiwan.
  • Chang TY; Heart Rhythm Center, Division of Cardiology, Department of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., Y.-C.S., S.-A.C.), Taipei Veterans General Hospital, Taiwan.
  • Wu CI; Institute of Clinical Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., C.-K.C., S.-A.C.), National Yang-Ming University, Taipei, Taiwan.
  • Kuo L; Faculty of Medicine, School of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., L.K., M.-H.W., C.-K.C.), National Yang-Ming University, Taipei, Taiwan.
  • Wu MH; Heart Rhythm Center, Division of Cardiology, Department of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., Y.-C.S., S.-A.C.), Taipei Veterans General Hospital, Taiwan.
  • Chen CK; Institute of Clinical Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., C.-K.C., S.-A.C.), National Yang-Ming University, Taipei, Taiwan.
  • Chang YY; Faculty of Medicine, School of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., L.K., M.-H.W., C.-K.C.), National Yang-Ming University, Taipei, Taiwan.
  • Shiu YC; Heart Rhythm Center, Division of Cardiology, Department of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., Y.-C.S., S.-A.C.), Taipei Veterans General Hospital, Taiwan.
  • Lu HH; Institute of Clinical Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., C.-I.W., L.K., C.-K.C., S.-A.C.), National Yang-Ming University, Taipei, Taiwan.
  • Chen SA; Faculty of Medicine, School of Medicine (C.-M.L., S.-L.C., Y.-J.L., L.-W.L., Y.-F.H., F.-P.C., T.-F.C., T.-C.T., J.-N.L., C.-Y.L., T.-Y.C., L.K., M.-H.W., C.-K.C.), National Yang-Ming University, Taipei, Taiwan.
Circ Arrhythm Electrophysiol ; 13(11): e008518, 2020 11.
Article en En | MEDLINE | ID: mdl-33021404
BACKGROUND: Non-pulmonary vein (NPV) trigger has been reported as an important predictor of recurrence post-atrial fibrillation ablation. Elimination of NPV triggers can reduce the recurrence of postablation atrial fibrillation. Deep learning was applied to preablation pulmonary vein computed tomography geometric slices to create a prediction model for NPV triggers in patients with paroxysmal atrial fibrillation. METHODS: We retrospectively analyzed 521 patients with paroxysmal atrial fibrillation who underwent catheter ablation of paroxysmal atrial fibrillation. Among them, pulmonary vein computed tomography geometric slices from 358 patients with nonrecurrent atrial fibrillation (1-3 mm interspace per slice, 20-200 slices for each patient, ranging from the upper border of the left atrium to the bottom of the heart, for a total of 23 683 images of slices) were used in the deep learning process, the ResNet34 of the neural network, to create the prediction model of the NPV trigger. There were 298 (83.2%) patients with only pulmonary vein triggers and 60 (16.8%) patients with NPV triggers±pulmonary vein triggers. The patients were randomly assigned to either training, validation, or test groups, and their data were allocated according to those sets. The image datasets were split into training (n=17 340), validation (n=3491), and testing (n=2852) groups, which had completely independent sets of patients. RESULTS: The accuracy of prediction in each pulmonary vein computed tomography image for NPV trigger was up to 82.4±2.0%. The sensitivity and specificity were 64.3±5.4% and 88.4±1.9%, respectively. For each patient, the accuracy of prediction for a NPV trigger was 88.6±2.3%. The sensitivity and specificity were 75.0±5.8% and 95.7±1.8%, respectively. The area under the curve for each image and patient were 0.82±0.01 and 0.88±0.07, respectively. CONCLUSIONS: The deep learning model using preablation pulmonary vein computed tomography can be applied to predict the trigger origins in patients with paroxysmal atrial fibrillation receiving catheter ablation. The application of this model may identify patients with a high risk of NPV trigger before ablation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Venas Pulmonares / Fibrilación Atrial / Flebografía / Interpretación de Imagen Radiográfica Asistida por Computador / Ablación por Catéter / Angiografía por Tomografía Computarizada / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Circ Arrhythm Electrophysiol Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Venas Pulmonares / Fibrilación Atrial / Flebografía / Interpretación de Imagen Radiográfica Asistida por Computador / Ablación por Catéter / Angiografía por Tomografía Computarizada / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Circ Arrhythm Electrophysiol Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Estados Unidos