Your browser doesn't support javascript.
loading
Electrochemical data on redox properties of human Cofilin-2 and its Mutant S3D.
Pignataro, Marcello; Rocco, Giulia Di; Lancellotti, Lidia; Bernini, Fabrizio; Subramanian, Khaushik; Castellini, Elena; Bortolotti, Carlo Augusto; Malferrari, Daniele; Moro, Daniele; Valdrè, Giovanni; Borsari, Marco; Monte, Federica Del.
Afiliación
  • Pignataro M; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, USA.
  • Rocco GD; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
  • Lancellotti L; Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
  • Bernini F; Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
  • Subramanian K; Novartis Institutes of Biomedical Research, Boston, USA.
  • Castellini E; Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
  • Bortolotti CA; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
  • Malferrari D; Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
  • Moro D; Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
  • Valdrè G; Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
  • Borsari M; Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
  • Monte FD; Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, USA.
Data Brief ; 33: 106345, 2020 Dec.
Article en En | MEDLINE | ID: mdl-33024804
The reported data are related to a research paper entitled "Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation" [1]. Info about the formation and redox properties of the disulfide bridge of a protein is quite difficult to obtain and only in a few cases was it possible to observe a cyclic voltammetry (CV) signal [2,3]. Human cofilin-2 contains two cysteines (Cys39 and Cys80) which can be oxidized in suitable conditions and form a disulfide bridge [1]. For this purpose, CV measurements were carried out on human cofilin-2 WT and its mutant S3D immobilized on a gold electrode coated by an anionic self-assembled monolayer (SAM), after a pre-oxidation time which was fundamental for observing a CV signal relating to the oxidation/reduction process of the disulfide bridge of the proteins. The data include CV curves obtained with and without electrochemical pre-oxidation and after oxidation with H2O2. In addition, the plot of the cathodic peak current vs. electrochemical pre-oxidation time and the pH dependence of the formal potential (E°') are reported. The data obtained by CV measurements were used to determine the time required to form the disulfide bridge for the immobilized proteins and, consequently, to observe the CV signal, to calculate the E°' values and analyse the pH dependence of E°'. The electrochemical data were provided which will be useful for further electrochemical investigations regarding proteins bearing disulfide bridge(s) or cysteines prone to oxidation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Data Brief Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Data Brief Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos