Your browser doesn't support javascript.
loading
A Dynamic Frame Selection Framework for Fast Video Recognition.
IEEE Trans Pattern Anal Mach Intell ; 44(4): 1699-1711, 2022 04.
Article en En | MEDLINE | ID: mdl-33026981
We introduce AdaFrame, a conditional computation framework that adaptively selects relevant frames on a per-input basis for fast video recognition. AdaFrame, which contains a Long Short-Term Memory augmented with a global memory to provide context information, operates as an agent to interact with video sequences aiming to search over time which frames to use. Trained with policy search methods, at each time step, AdaFrame computes a prediction, decides where to observe next, and estimates a utility, i.e., expected future rewards, of viewing more frames in the future. Exploring predicted utilities at testing time, AdaFrame is able to achieve adaptive lookahead inference so as to minimize the overall computational cost without incurring a degradation in accuracy. We conduct extensive experiments on two large-scale video benchmarks, FCVID and ActivityNet. With a vanilla ResNet-101 model, AdaFrame achieves similar performance of using all frames while only requiring, on average, 8.21 and 8.65 frames on FCVID and ActivityNet, respectively. We also demonstrate AdaFrame is compatible with modern 2D and 3D networks for video recognition. Furthermore, we show, among other things, learned frame usage can reflect the difficulty of making prediction decisions both at instance-level within the same class and at class-level among different categories.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos Tipo de estudio: Prognostic_studies Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos Tipo de estudio: Prognostic_studies Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos