Your browser doesn't support javascript.
loading
Silencing KIF18B enhances radiosensitivity: identification of a promising therapeutic target in sarcoma.
Liu, Wensi; Yu, Zhaojin; Tang, Haichao; Wang, Xiangyi; Zhang, Bing; Zhao, Jianhang; Liu, Xinli; Zhang, Jingdong; Wei, Minjie.
Afiliación
  • Liu W; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of molecular targeted anti-tumour drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision
  • Yu Z; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of molecular targeted anti-tumour drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision
  • Tang H; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of molecular targeted anti-tumour drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision
  • Wang X; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of molecular targeted anti-tumour drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision
  • Zhang B; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of molecular targeted anti-tumour drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision
  • Zhao J; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of molecular targeted anti-tumour drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision
  • Liu X; Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110000, P. R. China.
  • Zhang J; Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110000, P. R. China. Electronic address: jdzhang@cancerhosp-ln-cmu.com.
  • Wei M; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of molecular targeted anti-tumour drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision
EBioMedicine ; 61: 103056, 2020 Nov.
Article en En | MEDLINE | ID: mdl-33038765
BACKGROUND: Sarcomas are rare heterogeneous tumours, derived from primitive mesenchymal stem cells, with more than 100 distinct subtypes. Radioresistance remains a major clinical challenge for sarcomas, demanding urgent for effective biomarkers of radiosensitivity. METHODS: The radiosensitive gene Kinesin family member 18B (KIF18B) was mined through bioinformatics with integrating of 15 Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) database. We used radiotherapy-sh-KIF18B combination to observe the anti-tumour effect in sarcoma cells and subcutaneous or orthotopic xenograft models. The KIF18B-sensitive drug T0901317 (T09) was further mined to act as radiosensitizer using the Genomics of Drug Sensitivity in Cancer (GDSC) database. FINDINGS: KIF18B mRNA was significantly up-regulated in most of the subtypes of bone and soft tissue sarcoma. Multivariate Cox regression analysis showed that KIF18B high expression was an independent risk factor for prognosis in sarcoma patients with radiotherapy. Silencing KIF18B or using T09 significantly improved the radiosensitivity of sarcoma cells, delayed tumour growth in subcutaneous and orthotopic xenograft model, and elongated mice survival time. Furthermore, we predicted that T09 might bind to the structural region of KIF18B to exert radiosensitization. INTERPRETATION: These results indicated that sarcomas with low expression of KIF18B may benefit from radiotherapy. Moreover, the radiosensitivity of sarcomas with overexpressed KIF18B could be effectively improved by silencing KIF18B or using T09, which may provide promising strategies for radiotherapy treatment of sarcoma. FUNDINGS: A full list of funding can be found in the Funding Sources section.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tolerancia a Radiación / Sarcoma / Cinesinas / Silenciador del Gen Tipo de estudio: Diagnostic_studies / Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Aged / Animals / Child / Female / Humans / Male / Middle aged Idioma: En Revista: EBioMedicine Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tolerancia a Radiación / Sarcoma / Cinesinas / Silenciador del Gen Tipo de estudio: Diagnostic_studies / Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Aged / Animals / Child / Female / Humans / Male / Middle aged Idioma: En Revista: EBioMedicine Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos