Overview of Machine Learning Part 1: Fundamentals and Classic Approaches.
Neuroimaging Clin N Am
; 30(4): e17-e32, 2020 Nov.
Article
en En
| MEDLINE
| ID: mdl-33039003
The extensive body of research and advances in machine learning (ML) and the availability of a large volume of patient data make ML a powerful tool for producing models with the potential for widespread deployment in clinical settings. This article provides an overview of the classic supervised and unsupervised ML methods as well as fundamental concepts required for understanding how to develop generalizable and high-performing ML applications. It also describes the important steps for developing a ML model and how decisions made in these steps affect model performance and ability to generalize.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Interpretación de Imagen Asistida por Computador
/
Neuroimagen
/
Aprendizaje Automático
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Neuroimaging Clin N Am
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
/
NEUROLOGIA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Canadá
Pais de publicación:
Estados Unidos