Your browser doesn't support javascript.
loading
Overview of Machine Learning Part 1: Fundamentals and Classic Approaches.
Maleki, Farhad; Ovens, Katie; Najafian, Keyhan; Forghani, Behzad; Reinhold, Caroline; Forghani, Reza.
Afiliación
  • Maleki F; Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Montreal, Quebec H4A 3S5, Canada.
  • Ovens K; Department of Computer Science, University of Saskatchewan, 176 Thorvaldson Bldg, 110 Science Place, Saskatoon S7N 5C9, Canada.
  • Najafian K; Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Montreal, Quebec H4A 3S5, Canada.
  • Forghani B; Department of Radiology, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G1A4, Canada; Gerald Bronfman Department of Oncology, McGill University, Suite 720, 5100, Maisonneuve Boulevard West, Montreal, Quebec H4A3T2, Canada.
  • Reinhold C; Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Montreal, Quebec H4A 3S5, Canada; Department of Radiology, McGill University, 1650 Cedar Avenue, Montreal, Que
  • Forghani R; Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Montreal, Quebec H4A 3S5, Canada; Department of Radiology, McGill University, 1650 Cedar Avenue, Montreal, Que
Neuroimaging Clin N Am ; 30(4): e17-e32, 2020 Nov.
Article en En | MEDLINE | ID: mdl-33039003
The extensive body of research and advances in machine learning (ML) and the availability of a large volume of patient data make ML a powerful tool for producing models with the potential for widespread deployment in clinical settings. This article provides an overview of the classic supervised and unsupervised ML methods as well as fundamental concepts required for understanding how to develop generalizable and high-performing ML applications. It also describes the important steps for developing a ML model and how decisions made in these steps affect model performance and ability to generalize.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interpretación de Imagen Asistida por Computador / Neuroimagen / Aprendizaje Automático Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimaging Clin N Am Asunto de la revista: DIAGNOSTICO POR IMAGEM / NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interpretación de Imagen Asistida por Computador / Neuroimagen / Aprendizaje Automático Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimaging Clin N Am Asunto de la revista: DIAGNOSTICO POR IMAGEM / NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos