Automated Algorithm Using Pre-Intervention Fractional Flow Reserve Pullback Curve to Predict Post-Intervention Physiological Results.
JACC Cardiovasc Interv
; 13(22): 2670-2684, 2020 11 23.
Article
en En
| MEDLINE
| ID: mdl-33069650
OBJECTIVES: This study sought to develop an automated algorithm using pre-percutaneous coronary intervention (PCI) fractional flow reserve (FFR) pullback recordings to predict post-PCI physiological results in the pre-PCI phase. BACKGROUND: Both FFR and percent FFR increase measured after PCI showed incremental prognostic implications. However, there is no current method to predict post-PCI physiological results using physiological assessment in the pre-PCI phase. METHODS: An automated algorithm that analyzes instantaneous FFR gradient per unit time (dFFR(t)/dt) was developed from the derivation cohort (n = 30). Using dFFR(t)/dt, the pattern of atherosclerotic disease in each patient was classified into 3 groups (major, mixed, and minor FFR gradient groups) in both the internal validation cohort with constant pullback method (n = 234) and the external validation cohort with nonstandardized pullback methods (n = 252). All patients in the validation cohorts underwent PCI on the basis of pre-PCI FFR ≤0.80. Suboptimal post-PCI physiological results were defined as both post-PCI FFR <0.84 and percent FFR increase ≤15%. From the derivation cohort, cutoffs of dFFR(t)/dt for major and minor FFR gradient were 0.035/s and 0.015/s, respectively. RESULTS: In validation cohorts, dFFR(t)/dt showed significant correlations with percent FFR increase (R = 0.801; p < 0.001) and post-PCI FFR (R = 0.099; p = 0.029). In both the internal and external validation cohorts, the major FFR gradient group showed significantly higher post-PCI FFR and percent FFR increase compared with those in the mixed or minor FFR gradient groups (all p values <0.001). The proportions of suboptimal post-PCI physiological results were significantly different among 3 groups (10.4% vs. 25.8% vs. 45.7% for the major, mixed, and minor FFR gradient groups, respectively; p < 0.001) in validation cohorts. Absence of major FFR gradient lesion (odds ratio: 2.435, 95% [CI]: 1.252 to 4.734; p = 0.009) and presence of minor FFR gradient lesion (odds ratio: 2.756, 95% confidence interval: 1.629 to 4.664; p < 0.001) were independent predictors for suboptimal post-PCI physiological results. CONCLUSIONS: The automated algorithm analyzing pre-PCI pullback curve was able to predict post-PCI physiological results. The incidence of suboptimal post-PCI physiological results was significantly different according to algorithm-based classifications in the pre-PCI physiological assessment. (Automated Algorithm Detecting Physiologic Major Stenosis and Its Relationship with Post-PCI Clinical Outcomes [Algorithm-PCI]; NCT04304677).
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Enfermedad de la Arteria Coronaria
/
Reserva del Flujo Fraccional Miocárdico
/
Intervención Coronaria Percutánea
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
JACC Cardiovasc Interv
Asunto de la revista:
ANGIOLOGIA
/
CARDIOLOGIA
Año:
2020
Tipo del documento:
Article
Pais de publicación:
Estados Unidos