Your browser doesn't support javascript.
loading
Compaction of mixtures of rigid and highly deformable particles: A micromechanical model.
Cárdenas-Barrantes, Manuel; Cantor, David; Barés, Jonathan; Renouf, Mathieu; Azéma, Emilien.
Afiliación
  • Cárdenas-Barrantes M; LMGC, Université de Montpellier, CNRS, Montpellier, France.
  • Cantor D; Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Québec, Canada.
  • Barés J; LMGC, Université de Montpellier, CNRS, Montpellier, France.
  • Renouf M; LMGC, Université de Montpellier, CNRS, Montpellier, France.
  • Azéma E; LMGC, Université de Montpellier, CNRS, Montpellier, France.
Phys Rev E ; 102(3-1): 032904, 2020 Sep.
Article en En | MEDLINE | ID: mdl-33075867
We analyze the isotropic compaction of mixtures composed of rigid and deformable incompressible particles by the nonsmooth contact dynamics approach. The deformable bodies are simulated using a hyperelastic neo-Hookean constitutive law by means of classical finite elements. We characterize the evolution of the packing fraction, the elastic modulus, and the connectivity as a function of the applied stresses when varying the interparticle coefficient of friction. We show first that the packing fraction increases and tends asymptotically to a maximum value ϕ_{max}, which depends on both the mixture ratio and the interparticle friction. The bulk modulus is also shown to increase with the packing fraction and to diverge as it approaches ϕ_{max}. From the micromechanical expression of the granular stress tensor, we develop a model to describe the compaction behavior as a function of the applied pressure, the Young modulus of the deformable particles, and the mixture ratio. A bulk equation is also derived from the compaction equation. This model lays on the characterization of a single deformable particle under compression together with a power-law relation between connectivity and packing fraction. This compaction model, set by well-defined physical quantities, results in outstanding predictions from the jamming point up to very high densities and allows us to give a direct prediction of ϕ_{max} as a function of both the mixture ratio and the friction coefficient.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Año: 2020 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Año: 2020 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos