Your browser doesn't support javascript.
loading
Directed Energy Transfer from Monolayer WS2 to Near-Infrared Emitting PbS-CdS Quantum Dots.
Tanoh, Arelo O A; Gauriot, Nicolas; Delport, Géraud; Xiao, James; Pandya, Raj; Sung, Jooyoung; Allardice, Jesse; Li, Zhaojun; Williams, Cyan A; Baldwin, Alan; Stranks, Samuel D; Rao, Akshay.
Afiliación
  • Tanoh AOA; Cavendish Laboratory, Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
  • Gauriot N; Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom.
  • Delport G; Cavendish Laboratory, Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
  • Xiao J; Cavendish Laboratory, Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
  • Pandya R; Cavendish Laboratory, Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
  • Sung J; Cavendish Laboratory, Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
  • Allardice J; Cavendish Laboratory, Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
  • Li Z; Cavendish Laboratory, Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
  • Williams CA; Cavendish Laboratory, Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
  • Baldwin A; Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom.
  • Stranks SD; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  • Rao A; Cavendish Laboratory, Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
ACS Nano ; 14(11): 15374-15384, 2020 Nov 24.
Article en En | MEDLINE | ID: mdl-33078943
ABSTRACT
Heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDs) and inorganic semiconducting zero-dimensional (0D) quantum dots (QDs) offer useful charge and energy transfer pathways, which could form the basis of future optoelectronic devices. To date, most have focused on charge transfer and energy transfer from QDs to TMDs, that is, from 0D to 2D. Here, we present a study of the energy transfer process from a 2D to 0D material, specifically exploring energy transfer from monolayer tungsten disulfide (WS2) to near-infrared emitting lead sulfide-cadmium sulfide (PbS-CdS) QDs. The high absorption cross section of WS2 in the visible region combined with the potentially high photoluminescence (PL) efficiency of PbS QD systems makes this an interesting donor-acceptor system that can effectively use the WS2 as an antenna and the QD as a tunable emitter, in this case, downshifting the emission energy over hundreds of millielectron volts. We study the energy transfer process using photoluminescence excitation and PL microscopy and show that 58% of the QD PL arises due to energy transfer from the WS2. Time-resolved photoluminescence microscopy studies show that the energy transfer process is faster than the intrinsic PL quenching by trap states in the WS2, thus allowing for efficient energy transfer. Our results establish that QDs could be used as tunable and high PL efficiency emitters to modify the emission properties of TMDs. Such TMD-QD heterostructures could have applications in light-emitting technologies or artificial light-harvesting systems or be used to read out the state of TMD devices optically in various logic and computing applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido