Your browser doesn't support javascript.
loading
RPN2 is targeted by miR-181c and mediates glioma progression and temozolomide sensitivity via the wnt/ß-catenin signaling pathway.
Sun, Jikui; Ma, Quanfeng; Li, Banban; Wang, Chen; Mo, Lidong; Zhang, Xuebin; Tang, Fan; Wang, Qiong; Yan, Xiaoling; Yao, Xiuhua; Wu, Qiaoli; Shu, Chang; Xiong, Jinbiao; Fan, Weijia; Wang, Jinhuan.
Afiliación
  • Sun J; School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
  • Ma Q; Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Li B; Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Wang C; Department of Hematology, Taian Central Hospital, Taian, 271000, China.
  • Mo L; Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Zhang X; Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Tang F; Pathology Department, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Wang Q; Pathology Department, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Yan X; Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Yao X; Pathology Department, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Wu Q; Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Shu C; Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Xiong J; Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
  • Fan W; Tianjin Neurological Institute, Tianjin Medical University General hospital, Tianjin, 300052, China.
  • Wang J; Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
Cell Death Dis ; 11(10): 890, 2020 10 22.
Article en En | MEDLINE | ID: mdl-33087705
ABSTRACT
Accumulating evidence indicates that the dysregulation of the miRNAs/mRNA-mediated carcinogenic signaling pathway network is intimately involved in glioma initiation and progression. In the present study, by performing experiments and bioinformatics analysis, we found that RPN2 was markedly elevated in glioma specimens compared with normal controls, and its upregulation was significantly linked to WHO grade and poor prognosis. Knockdown of RPN2 inhibited tumor proliferation and invasion, promoted apoptosis, and enhanced temozolomide (TMZ) sensitivity in vitro and in vivo. Mechanistic investigation revealed that RPN2 deletion repressed ß-catenin/Tcf-4 transcription activity partly through functional activation of glycogen synthase kinase-3ß (GSK-3ß). Furthermore, we showed that RPN2 is a direct functional target of miR-181c. Ectopic miR-181c expression suppressed ß-catenin/Tcf-4 activity, while restoration of RPN2 partly reversed this inhibitory effect mediated by miR-181c, implying a molecular mechanism in which TMZ sensitivity is mediated by miR-181c. Taken together, our data revealed a new miR-181c/RPN2/wnt/ß-catenin signaling axis that plays significant roles in glioma tumorigenesis and TMZ resistance, and it represents a potential therapeutic target, especially in GBM.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: MicroARNs / Complejo de la Endopetidasa Proteasomal / Vía de Señalización Wnt / Temozolomida / Glioma / Hexosiltransferasas Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Cell Death Dis Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: MicroARNs / Complejo de la Endopetidasa Proteasomal / Vía de Señalización Wnt / Temozolomida / Glioma / Hexosiltransferasas Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Cell Death Dis Año: 2020 Tipo del documento: Article País de afiliación: China