Your browser doesn't support javascript.
loading
Preparation of a New Iron-Carbon-Loaded Constructed Wetland Substrate and Enhanced Phosphorus Removal Performance.
Zhao, Jie; Gao, Jingqing; Liu, Junzhao.
Afiliación
  • Zhao J; College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
  • Gao J; College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
  • Liu J; College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
Materials (Basel) ; 13(21)2020 Oct 23.
Article en En | MEDLINE | ID: mdl-33114072
Iron-carbon substrates have attracted extensive attention in water treatment due to their excellent processing ability. The traditional iron-carbon substrate suffers from poor removal effects, separation of the cathode and anode, hardening, secondary pollution, etc. In this study, a new type of iron-carbon-loaded substrate (NICLS) was developed to solve the problems of traditional micro-electrolytic substrates. Through experimental research, a preparation method for the NICLS with Fe and C as the core, zeolite as the skeleton, and water-based polyurethane as the binder was proposed. The performance of the NICLS in phosphorus-containing wastewater was analyzed. The results are as follows: The optimal synthesis conditions of the NICLS are 1 g hydroxycellulose, wood activated carbon as the cathode, an activated carbon particle size of 200-60 mesh, and an Fe/C ratio of 1:1. Acidic conditions can promote the degradation of phosphorus by the NICLS. Through the characterization of the NICLS (scanning electron microscope (SEM), X-ray diffractometer (XRD), and energy-dispersive spectrometer (EDS), etc.), it is concluded that the mechanism of the NICLS phosphorus removal is a chemical reaction produced by micro-electrolysis. Using the NICLS to treat phosphorus-containing wastewater has the advantages of high efficiency and durability. Therefore, it can be considered that the NICLS is a promising material to remove phosphorus.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza