Your browser doesn't support javascript.
loading
Network Trees: A Method for Recursively Partitioning Covariance Structures.
Jones, Payton J; Mair, Patrick; Simon, Thorsten; Zeileis, Achim.
Afiliación
  • Jones PJ; Harvard University, Cambridge, MA, USA. paytonjjones@gmail.com.
  • Mair P; Harvard University, Cambridge, MA, USA.
  • Simon T; Universität Innsbruck, Innsbruck, Austria.
  • Zeileis A; Universität Innsbruck, Innsbruck, Austria.
Psychometrika ; 85(4): 926-945, 2020 12.
Article en En | MEDLINE | ID: mdl-33146786
In many areas of psychology, correlation-based network approaches (i.e., psychometric networks) have become a popular tool. In this paper, we propose an approach that recursively splits the sample based on covariates in order to detect significant differences in the structure of the covariance or correlation matrix. Psychometric networks or other correlation-based models (e.g., factor models) can be subsequently estimated from the resultant splits. We adapt model-based recursive partitioning and conditional inference tree approaches for finding covariate splits in a recursive manner. The empirical power of these approaches is studied in several simulation conditions. Examples are given using real-life data from personality and clinical research.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proyectos de Investigación Tipo de estudio: Prognostic_studies Idioma: En Revista: Psychometrika Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proyectos de Investigación Tipo de estudio: Prognostic_studies Idioma: En Revista: Psychometrika Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos