Your browser doesn't support javascript.
loading
MicroRNA-210 Regulates Dendritic Morphology and Behavioural Flexibility in Mice.
Watts, Michelle; Williams, Gabrielle; Lu, Jing; Nithianantharajah, Jess; Claudianos, Charles.
Afiliación
  • Watts M; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Williams G; School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
  • Lu J; School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
  • Nithianantharajah J; The Florey Institute of Neuroscience & Mental Health, Melbourne, VIC, 3052, Australia. jess.n@florey.edu.au.
  • Claudianos C; Florey Department of Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia. jess.n@florey.edu.au.
Mol Neurobiol ; 58(4): 1330-1344, 2021 Apr.
Article en En | MEDLINE | ID: mdl-33165828
ABSTRACT
MicroRNAs are known to be critical regulators of neuronal plasticity. The highly conserved, hypoxia-regulated microRNA-210 (miR-210) has been shown to be associated with long-term memory in invertebrates and dysregulated in neurodevelopmental and neurodegenerative disease models. However, the role of miR-210 in mammalian neuronal function and cognitive behaviour remains unexplored. Here we generated Nestin-cre-driven miR-210 neuronal knockout mice to characterise miR-210 regulation and function using in vitro and in vivo methods. We identified miR-210 localisation throughout neuronal somas and dendritic processes and increased levels of mature miR-210 in response to neural activity in vitro. Loss of miR-210 in neurons resulted in higher oxidative phosphorylation and ROS production following hypoxia and increased dendritic arbour density in hippocampal cultures. Additionally, miR-210 knockout mice displayed altered behavioural flexibility in rodent touchscreen tests, particularly during early reversal learning suggesting processes underlying updating of information and feedback were impacted. Our findings support a conserved, activity-dependent role for miR-210 in neuroplasticity and cognitive function.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducta Animal / Dendritas / MicroARNs Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Mol Neurobiol Asunto de la revista: BIOLOGIA MOLECULAR / NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducta Animal / Dendritas / MicroARNs Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Mol Neurobiol Asunto de la revista: BIOLOGIA MOLECULAR / NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Australia