Your browser doesn't support javascript.
loading
Comparison of blind deconvolution- and Patlak analysis-based methods for determining vascular permeability.
Tien, Joe; Li, Xuanyue; Linville, Raleigh M; Feldman, Evan J.
Afiliación
  • Tien J; Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; Division of Materials Science and Engineering, Boston University, 15 St. Mary's Street, Brookline, MA 02446, USA. Electronic address: jtien@bu.edu.
  • Li X; Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.
  • Linville RM; Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.
  • Feldman EJ; Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.
Microvasc Res ; 133: 104102, 2021 01.
Article en En | MEDLINE | ID: mdl-33166578
This study describes a computational algorithm to determine vascular permeability constants from time-lapse imaging data without concurrent knowledge of the arterial input function. The algorithm is based on "blind" deconvolution of imaging data, which were generated with analytical and finite-element models of bidirectional solute transport between a capillary and its surrounding tissue. Compared to the commonly used Patlak analysis, the blind algorithm is substantially more accurate in the presence of solute delay and dispersion. We also compared the performance of the blind algorithm with that of a simpler one that assumed unidirectional transport from capillary to tissue [as described in Truslow et al., Microvasc. Res. 90, 117-120 (2013)]. The algorithm based on bidirectional transport was more accurate than the one based on unidirectional transport for more permeable vessels and smaller extravascular distribution volumes, and less accurate for less permeable vessels and larger extravascular distribution volumes. Our results indicate that blind deconvolution is superior to Patlak analysis for permeability mapping under clinically relevant conditions, and can thus potentially improve the detection of tissue regions with a compromised vascular barrier.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Imagen Asistido por Computador / Permeabilidad Capilar / Imagen de Lapso de Tiempo / Microcirculación / Modelos Cardiovasculares Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Microvasc Res Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Imagen Asistido por Computador / Permeabilidad Capilar / Imagen de Lapso de Tiempo / Microcirculación / Modelos Cardiovasculares Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Microvasc Res Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos