Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm.
Sci Rep
; 10(1): 19503, 2020 11 11.
Article
en En
| MEDLINE
| ID: mdl-33177576
Pre-treatment determination of renal cell carcinoma aggressiveness may help guide clinical decision-making. We aimed to differentiate low-grade (Fuhrman I-II) from high-grade (Fuhrman III-IV) renal cell carcinoma using radiomics features extracted from routine MRI. 482 pathologically confirmed renal cell carcinoma lesions from 2008 to 2019 in a multicenter cohort were retrospectively identified. 439 lesions with information on Fuhrman grade from 4 institutions were divided into training and test sets with an 8:2 split for model development and internal validation. Another 43 lesions from a separate institution were set aside for independent external validation. The performance of TPOT (Tree-Based Pipeline Optimization Tool), an automatic machine learning pipeline optimizer, was compared to hand-optimized machine learning pipeline. The best-performing hand-optimized pipeline was a Bayesian classifier with Fischer Score feature selection, achieving an external validation ROC AUC of 0.59 (95% CI 0.49-0.68), accuracy of 0.77 (95% CI 0.68-0.84), sensitivity of 0.38 (95% CI 0.29-0.48), and specificity of 0.86 (95% CI 0.78-0.92). The best-performing TPOT pipeline achieved an external validation ROC AUC of 0.60 (95% CI 0.50-0.69), accuracy of 0.81 (95% CI 0.72-0.88), sensitivity of 0.12 (95% CI 0.14-0.30), and specificity of 0.97 (95% CI 0.87-0.97). Automated machine learning pipelines can perform equivalent to or better than hand-optimized pipeline on an external validation test non-invasively predicting Fuhrman grade of renal cell carcinoma using conventional MRI.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Carcinoma de Células Renales
/
Aprendizaje Automático
/
Neoplasias Renales
Tipo de estudio:
Diagnostic_studies
/
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Adult
/
Aged
/
Aged80
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Sci Rep
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido