Your browser doesn't support javascript.
loading
Critical discovery and synthesis of novel antibacterial and resistance-modifying agents inspired by plant phytochemical defense mechanisms.
Soliman, Sameh S M; Saeed, Balsam Qubais; Elseginy, Samia A; Al-Marzooq, Farah; Ahmady, Islam M; El-Keblawy, Ali A; Hamdy, Rania.
Afiliación
  • Soliman SSM; Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt. Electronic address: sso
  • Saeed BQ; Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates.
  • Elseginy SA; Green Chemistry Department, Chemical Industries Research Division, National Research Center, P.O. Box 12622, Egypt; Molecular Modelling Lab., Biochemistry School, Bristol University, Bristol, UK.
  • Al-Marzooq F; Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Department of medical microbiology and immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
  • Ahmady IM; Department of Applied Biology, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
  • El-Keblawy AA; Department of Applied Biology, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Research Institutes of Science and Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
  • Hamdy R; Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
Chem Biol Interact ; 333: 109318, 2021 Jan 05.
Article en En | MEDLINE | ID: mdl-33186599
Antimicrobial resistance is at increasing risk worldwide since it is threatening the ability to control common infectious diseases, resulting in prolonged illness, disability, and death. Herein, we inspired by the effective plant phytochemical mechanisms evolved to overcome microbial pathogenesis and evolved resistance. Cuminaldehyde is previously reported as the main antibacterial component in Calligonum comosum essential oil. The toxicity of cuminaldehyde limits its medical application for human use. On the other hand, compared to cuminaldehyde, the plant total extract showed similar antibacterial activities, while maintained lower toxicity, although it contains 22 times less cuminaldehyde. Thus, we assumed that other components in the plant extracts specifically affect bacteria but not mammalian cells. Bioassay-guided fractionations combined with comparative metabolomics analysis of different plant extracts were employed. The results revealed the presence of bacterial species-specific phytochemicals. Cinnamyl linoleate and linoleic acid enhanced the antibacterial activities of cuminaldehyde and ampicillin against S. aureus including MRSA, while decanal and cinnamyl linoleate enhanced the activities against E. coli. Computational modeling and enzyme inhibition assays indicated that cinnamyl linoleate selectively bind to bacterial ribosomal RNA methyltransferase, an important enzyme involved in the virulence and resistance of multidrug resistant bacteria. The results obtained can be employed for the future preparation of pharmaceutical formula containing cinnamyl linoleate in order to overcome evolved multidrug resistance behaviors by microbes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aceites Volátiles / Diseño de Fármacos / Farmacorresistencia Bacteriana / Fitoquímicos / Caryophyllales / Antibacterianos Límite: Humans Idioma: En Revista: Chem Biol Interact Año: 2021 Tipo del documento: Article Pais de publicación: Irlanda

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aceites Volátiles / Diseño de Fármacos / Farmacorresistencia Bacteriana / Fitoquímicos / Caryophyllales / Antibacterianos Límite: Humans Idioma: En Revista: Chem Biol Interact Año: 2021 Tipo del documento: Article Pais de publicación: Irlanda