Your browser doesn't support javascript.
loading
Loss of cell wall integrity genes cpxA and mrcB causes flocculation in Escherichia coli.
Sugawara, Keita; Toyoda, Hayato; Kimura, Mami; Hayasaka, Shunsuke; Saito, Hiromi; Kobayashi, Hiroshi; Ihara, Kunio; Ida, Tomoaki; Akaike, Takaaki; Ando, Eiji; Hyodo, Mamoru; Hayakawa, Yoshihiro; Hamamoto, Shin; Uozumi, Nobuyuki.
Afiliación
  • Sugawara K; Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
  • Toyoda H; Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
  • Kimura M; Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
  • Hayasaka S; Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
  • Saito H; Department of Biochemistry, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan.
  • Kobayashi H; Department of Biochemistry, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan.
  • Ihara K; Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan.
  • Ida T; Department of Environmental Medicine and Molecular Toxicology, Graduate School of Medicine, Tohoku University, Seiryo-machi 2-1, Sendai 980-8575, Japan.
  • Akaike T; Department of Environmental Medicine and Molecular Toxicology, Graduate School of Medicine, Tohoku University, Seiryo-machi 2-1, Sendai 980-8575, Japan.
  • Ando E; Shimadzu Corporation, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan.
  • Hyodo M; Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota 470-0392, Japan.
  • Hayakawa Y; Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota 470-0392, Japan.
  • Hamamoto S; Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
  • Uozumi N; Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
Biochem J ; 478(1): 41-59, 2021 01 15.
Article en En | MEDLINE | ID: mdl-33196080
ABSTRACT
Flocculation has been recognized for hundreds of years as an important phenomenon in brewing and wastewater treatment. However, the underlying molecular mechanisms remain elusive. The lack of a distinct phenotype to differentiate between slow-growing mutants and floc-forming mutants prevents the isolation of floc-related gene by conventional mutant screening. To overcome this, we performed a two-step Escherichia coli mutant screen. The initial screen of E. coli for mutants conferring floc production during high salt treatment yielded a mutant containing point mutations in 61 genes. The following screen of the corresponding single-gene mutants identified two genes, mrcB, encoding a peptidoglycan-synthesizing enzyme and cpxA, encoding a histidine kinase of a two-component signal transduction system that contributed to salt tolerance and flocculation prevention. Both single mutants formed flocs during high salt shock, these flocs contained cytosolic proteins. ΔcpxA exhibited decreased growth with increasing floc production and addition of magnesium to ΔcpxA suppressed floc production effectively. In contrast, the growth of ΔmrcB was inconsistent under high salt conditions. In both strains, flocculation was accompanied by the release of membrane vesicles containing inner and outer membrane proteins. Of 25 histidine kinase mutants tested, ΔcpxA produced the highest amount of proteins in floc. Expression of cpxP was up-regulated by high salt in ΔcpxA, suggesting that high salinity and activation of CpxR might promote floc formation. The finding that ΔmrcB or ΔcpxA conferred floc production indicates that cell envelope stress triggered by unfavorable environmental conditions cause the initiation of flocculation in E. coli.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Quinasas / Membrana Celular / Pared Celular / Proteínas de Escherichia coli / D-Ala-D-Ala Carboxipeptidasa de Tipo Serina / Proteínas de Unión a las Penicilinas / Peptidoglicano Glicosiltransferasa / Escherichia coli / Tolerancia a la Sal Tipo de estudio: Etiology_studies / Prognostic_studies Idioma: En Revista: Biochem J Año: 2021 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Quinasas / Membrana Celular / Pared Celular / Proteínas de Escherichia coli / D-Ala-D-Ala Carboxipeptidasa de Tipo Serina / Proteínas de Unión a las Penicilinas / Peptidoglicano Glicosiltransferasa / Escherichia coli / Tolerancia a la Sal Tipo de estudio: Etiology_studies / Prognostic_studies Idioma: En Revista: Biochem J Año: 2021 Tipo del documento: Article País de afiliación: Japón