Your browser doesn't support javascript.
loading
The structural basis of promiscuity in small multidrug resistance transporters.
Kermani, Ali A; Macdonald, Christian B; Burata, Olive E; Ben Koff, B; Koide, Akiko; Denbaum, Eric; Koide, Shohei; Stockbridge, Randy B.
Afiliación
  • Kermani AA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
  • Macdonald CB; Program in Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
  • Burata OE; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
  • Ben Koff B; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
  • Koide A; Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, 10016, USA.
  • Denbaum E; Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA.
  • Koide S; Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, 10016, USA.
  • Stockbridge RB; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
Nat Commun ; 11(1): 6064, 2020 11 27.
Article en En | MEDLINE | ID: mdl-33247110
ABSTRACT
By providing broad resistance to environmental biocides, transporters from the small multidrug resistance (SMR) family drive the spread of multidrug resistance cassettes among bacterial populations. A fundamental understanding of substrate selectivity by SMR transporters is needed to identify the types of selective pressures that contribute to this process. Using solid-supported membrane electrophysiology, we find that promiscuous transport of hydrophobic substituted cations is a general feature of SMR transporters. To understand the molecular basis for promiscuity, we solved X-ray crystal structures of a SMR transporter Gdx-Clo in complex with substrates to a maximum resolution of 2.3 Å. These structures confirm the family's extremely rare dual topology architecture and reveal a cleft between two helices that provides accommodation in the membrane for the hydrophobic substituents of transported drug-like cations.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Transporte de Membrana / Proteínas Bacterianas / Farmacorresistencia Bacteriana Múltiple Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Transporte de Membrana / Proteínas Bacterianas / Farmacorresistencia Bacteriana Múltiple Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos