Your browser doesn't support javascript.
loading
Building Blocks for Magnon Optics: Emission and Conversion of Short Spin Waves.
Groß, Felix; Zelent, Mateusz; Träger, Nick; Förster, Johannes; Sanli, Umut T; Sauter, Robert; Decker, Martin; Back, Christian H; Weigand, Markus; Keskinbora, Kahraman; Schütz, Gisela; Krawczyk, Maciej; Gräfe, Joachim.
Afiliación
  • Groß F; Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
  • Zelent M; Faculty of Physics, Adam Mickiewicz University, Poznan, 61-614 Poznan, Poland.
  • Träger N; Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
  • Förster J; Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
  • Sanli UT; Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
  • Sauter R; Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
  • Decker M; Technical University Munich, 85748 Garching, Germany.
  • Back CH; Technical University Munich, 85748 Garching, Germany.
  • Weigand M; Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany.
  • Keskinbora K; Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
  • Schütz G; Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
  • Krawczyk M; Faculty of Physics, Adam Mickiewicz University, Poznan, 61-614 Poznan, Poland.
  • Gräfe J; Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
ACS Nano ; 14(12): 17184-17193, 2020 Dec 22.
Article en En | MEDLINE | ID: mdl-33253544
ABSTRACT
Magnons have proven to be a promising candidate for low-power wave-based computing. The ability to encode information not only in amplitude but also in phase allows for increased data transmission rates. However, efficiently exciting nanoscale spin waves for a functional device requires sophisticated lithography techniques and therefore, remains a challenge. Here, we report on a method to measure the full spin wave isofrequency contour for a given frequency and field. A single antidot within a continuous thin film excites wave vectors along all directions within a single excitation geometry. Varying structural parameters or introducing Dzyaloshinskii-Moriya interaction allows the manipulation and control of the isofrequency contour, which is desirable for the fabrication of future magnonic devices. Additionally, the same antidot structure is utilized as a multipurpose spin wave device. Depending on its position with respect to the microstrip antenna, it can either be an emitter for short spin waves or a directional converter for incoming plane waves. Using simulations we show that such a converter structure is capable of generating a coherent spin wave beam. By introducing a short wavelength spin wave beam into existing magnonic gate logic, it is conceivable to reduce the size of devices to the micrometer scale. This method gives access to short wavelength spin waves to a broad range of magnonic devices without the need for refined sample preparation techniques. The presented toolbox for spin wave manipulation, emission, and conversion is a crucial step for spin wave optics and gate logic.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2020 Tipo del documento: Article País de afiliación: Alemania