Your browser doesn't support javascript.
loading
Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications.
Radhakrishnan, Socrates; Nagarajan, Sakthivel; Belaid, Habib; Farha, Cynthia; Iatsunskyi, Igor; Coy, Emerson; Soussan, Laurence; Huon, Vincent; Bares, Jonathan; Belkacemi, Kawthar; Teyssier, Catherine; Balme, Sébastien; Miele, Philippe; Cornu, David; Kalkura, Narayana; Cavaillès, Vincent; Bechelany, Mikhael.
Afiliación
  • Radhakrishnan S; Crystal Growth Centre, Anna University, Chennai 600025, India; Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
  • Nagarajan S; Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
  • Belaid H; Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France; IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France.
  • Farha C; Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
  • Iatsunskyi I; NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland.
  • Coy E; NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland.
  • Soussan L; Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
  • Huon V; LMGC, Laboratoire de Mécanique et Génie Civil, Université Montpellier, CNRS, Montpellier, France.
  • Bares J; LMGC, Laboratoire de Mécanique et Génie Civil, Université Montpellier, CNRS, Montpellier, France.
  • Belkacemi K; IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France.
  • Teyssier C; IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France.
  • Balme S; Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
  • Miele P; Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Institut Universitaire de France (IUF), 1 rue Descartes, Paris F-73231, France.
  • Cornu D; Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
  • Kalkura N; Crystal Growth Centre, Anna University, Chennai 600025, India.
  • Cavaillès V; IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France.
  • Bechelany M; Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France. Electronic address: mikhael.bechelany@umontpellier.fr.
Mater Sci Eng C Mater Biol Appl ; 118: 111525, 2021 Jan.
Article en En | MEDLINE | ID: mdl-33255078
ABSTRACT
Synthetic polymers are widely employed for bone tissue engineering due to their tunable physical properties and biocompatibility. Inherently, most of these polymers display poor antimicrobial properties. Infection at the site of implantation is a major cause for failure or delay in bone healing process and the development of antimicrobial polymers is highly desired. In this study, silver nanoparticles (AgNps) were synthesized in polycaprolactone (PCL) solution by in-situ reduction and further extruded into PCL/AgNps filaments. Customized 3D structures were fabricated using the PCL/AgNps filaments through 3D printing technique. As demonstrated by scanning electron microscopy, the 3D printed scaffolds exhibited interconnected porous structures. Furthermore, X-ray photoelectron spectroscopy analysis revealed the reduction of silver ions. Transmission electron microscopy along with energy-dispersive X-ray spectroscopy analysis confirmed the formation of silver nanoparticles throughout the PCL matrix. In vitro enzymatic degradation studies showed that the PCL/AgNps scaffolds displayed 80% degradation in 20 days. The scaffolds were cytocompatible, as assessed using hFOB cells and their antibacterial activity was demonstrated on Escherichia coli. Due to their interconnected porous structure, mechanical and antibacterial properties, these cytocompatible multifunctional 3D printed PCL/AgNps scaffolds appear highly suitable for bone tissue engineering.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingeniería de Tejidos / Nanopartículas del Metal Idioma: En Revista: Mater Sci Eng C Mater Biol Appl Año: 2021 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingeniería de Tejidos / Nanopartículas del Metal Idioma: En Revista: Mater Sci Eng C Mater Biol Appl Año: 2021 Tipo del documento: Article País de afiliación: Francia
...