Your browser doesn't support javascript.
loading
Entropy-Based Clustering Algorithm for Fingerprint Singular Point Detection.
Le, Ngoc Tuyen; Le, Duc Huy; Wang, Jing-Wein; Wang, Chih-Chiang.
Afiliación
  • Le NT; Institute of Photonic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
  • Le DH; Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
  • Wang JW; Institute of Photonic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
  • Wang CC; Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
Entropy (Basel) ; 21(8)2019 Aug 12.
Article en En | MEDLINE | ID: mdl-33267499
Fingerprints have long been used in automated fingerprint identification or verification systems. Singular points (SPs), namely the core and delta point, are the basic features widely used for fingerprint registration, orientation field estimation, and fingerprint classification. In this study, we propose an adaptive method to detect SPs in a fingerprint image. The algorithm consists of three stages. First, an innovative enhancement method based on singular value decomposition is applied to remove the background of the fingerprint image. Second, a blurring detection and boundary segmentation algorithm based on the innovative image enhancement is proposed to detect the region of impression. Finally, an adaptive method based on wavelet extrema and the Henry system for core point detection is proposed. Experiments conducted using the FVC2002 DB1 and DB2 databases prove that our method can detect SPs reliably.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Entropy (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Entropy (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Suiza