Your browser doesn't support javascript.
loading
Microplotter-Printed On-Chip Combinatorial Library of Ink-Derived Multiple Metal Oxides as an "Electronic Olfaction" Unit.
Fedorov, Fedor S; Simonenko, Nikolay P; Trouillet, Vanessa; Volkov, Ivan A; Plugin, Ilya A; Rupasov, Dmitry P; Mokrushin, Artem S; Nagornov, Ilya A; Simonenko, Tatiana L; Vlasov, Ivan S; Simonenko, Elizaveta P; Sevastyanov, Vladimir G; Kuznetsov, Nikolay T; Varezhnikov, Alexey S; Sommer, Martin; Kiselev, Ilia; Nasibulin, Albert G; Sysoev, Victor V.
Afiliación
  • Fedorov FS; Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia.
  • Simonenko NP; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia.
  • Trouillet V; Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
  • Volkov IA; Moscow Institute of Physics and Technology (MIPT), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russia.
  • Plugin IA; Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Street, Saratov 410054, Russia.
  • Rupasov DP; Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia.
  • Mokrushin AS; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia.
  • Nagornov IA; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia.
  • Simonenko TL; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia.
  • Vlasov IS; Moscow Institute of Physics and Technology (MIPT), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russia.
  • Simonenko EP; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia.
  • Sevastyanov VG; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia.
  • Kuznetsov NT; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia.
  • Varezhnikov AS; Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Street, Saratov 410054, Russia.
  • Sommer M; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
  • Kiselev I; Breitmeier Messtechnik GmbH, Englerstr. 27, 76275 Ettlingen, Germany.
  • Nasibulin AG; Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia.
  • Sysoev VV; Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Aalto, Finland.
ACS Appl Mater Interfaces ; 12(50): 56135-56150, 2020 Dec 16.
Article en En | MEDLINE | ID: mdl-33270411
Information about the surrounding atmosphere at a real timescale significantly relies on available gas sensors to be efficiently combined into multisensor arrays as electronic olfaction units. However, the array's performance is challenged by the ability to provide orthogonal responses from the employed sensors at a reasonable cost. This issue becomes more demanded when the arrays are designed under an on-chip paradigm to meet a number of emerging calls either in the internet-of-things industry or in situ noninvasive diagnostics of human breath, to name a few, for small-sized low-powered detectors. The recent advances in additive manufacturing provide a solid top-down background to develop such chip-based gas-analytical systems under low-cost technology protocols. Here, we employ hydrolytically active heteroligand complexes of metals as ink components for microplotter patterning a multioxide combinatorial library of chemiresistive type at a single chip equipped with multiple electrodes. To primarily test the performance of such a multisensor array, various semiconducting oxides of the p- and n-conductance origins based on pristine and mixed nanocrystalline MnOx, TiO2, ZrO2, CeO2, ZnO, Cr2O3, Co3O4, and SnO2 thin films, of up to 70 nm thick, have been printed over hundred µm areas and their micronanostructure and fabrication conditions are thoroughly assessed. The developed multioxide library is shown to deliver at a range of operating temperatures, up to 400 °C, highly sensitive and highly selective vector signals to different, but chemically akin, alcohol vapors (methanol, ethanol, isopropanol, and n-butanol) as examples at low ppm concentrations when mixed with air. The suggested approach provides us a promising way to achieve cost-effective and well-performed electronic olfaction devices matured from the diverse chemiresistive responses of the printed nanocrystalline oxides.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Estados Unidos