Your browser doesn't support javascript.
loading
Quantifying the Dynamics of Protein Self-Organization Using Deep Learning Analysis of Atomic Force Microscopy Data.
Ziatdinov, Maxim; Zhang, Shuai; Dollar, Orion; Pfaendtner, Jim; Mundy, Christopher J; Li, Xin; Pyles, Harley; Baker, David; De Yoreo, James J; Kalinin, Sergei V.
Afiliación
  • Ziatdinov M; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Zhang S; Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Dollar O; Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States.
  • Pfaendtner J; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
  • Mundy CJ; Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.
  • Li X; Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.
  • Pyles H; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
  • Baker D; Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.
  • De Yoreo JJ; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Kalinin SV; Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States.
Nano Lett ; 21(1): 158-165, 2021 01 13.
Article en En | MEDLINE | ID: mdl-33306401
ABSTRACT
The dynamics of protein self-assembly on the inorganic surface and the resultant geometric patterns are visualized using high-speed atomic force microscopy. The time dynamics of the classical macroscopic descriptors such as 2D fast Fourier transforms, correlation, and pair distribution functions are explored using the unsupervised linear unmixing, demonstrating the presence of static ordered and dynamic disordered phases and establishing their time dynamics. The deep learning (DL)-based workflow is developed to analyze detailed particle dynamics and explore the evolution of local geometries. Finally, we use a combination of DL feature extraction and mixture modeling to define particle neighborhoods free of physics constraints, allowing for a separation of possible classes of particle behavior and identification of the associated transitions. Overall, this work establishes the workflow for the analysis of the self-organization processes in complex systems from observational data and provides insight into the fundamental mechanisms.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos