Your browser doesn't support javascript.
loading
Green analytical assay for the quality assessment of tea by using pocket-sized NIR spectrometer.
Wang, Yujie; Li, Menghui; Li, Luqing; Ning, Jingming; Zhang, Zhengzhu.
Afiliación
  • Wang Y; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
  • Li M; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
  • Li L; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
  • Ning J; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China. Electronic address: ningjm1998009@163.com.
  • Zhang Z; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China. Electronic address: zzz@ahau.edu.cn.
Food Chem ; 345: 128816, 2021 May 30.
Article en En | MEDLINE | ID: mdl-33316713
Rapid and low-cost testing tools provide new methods for the evaluation of tea quality. In this study, a micro near-infrared (NIR) spectrometer was used for the qualitative and quantitative evaluation of tea. A total of 360 tea samples consisting of black, green, yellow, and oolong tea were collected from different countries. Chemometrics including linear partial least squares (PLS) regression, PLS discriminant analysis, and nonlinear radial basis function-support vector machine (RBF-SVM) were used. The RBF-SVM model achieved optimal discriminant performance for tea types with a correct classification rate of 98.33%. Wavelength selection of iteratively variable subset optimization (IVSO) exhibited considerable advantages in improving the predictive performance of catechin, caffeine, and theanine models. The IVSO-PLS regression models achieved satisfactory results for catechins and caffeine prediction, with Rp over 0.9, and RPD over 2.5. Thus, the study provided a portable and low-cost method for in-situ assessing tea quality.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Té / Calidad de los Alimentos / Espectroscopía Infrarroja Corta / Tecnología Química Verde / Análisis de los Alimentos Tipo de estudio: Prognostic_studies / Qualitative_research Idioma: En Revista: Food Chem Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Té / Calidad de los Alimentos / Espectroscopía Infrarroja Corta / Tecnología Química Verde / Análisis de los Alimentos Tipo de estudio: Prognostic_studies / Qualitative_research Idioma: En Revista: Food Chem Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido