Green analytical assay for the quality assessment of tea by using pocket-sized NIR spectrometer.
Food Chem
; 345: 128816, 2021 May 30.
Article
en En
| MEDLINE
| ID: mdl-33316713
Rapid and low-cost testing tools provide new methods for the evaluation of tea quality. In this study, a micro near-infrared (NIR) spectrometer was used for the qualitative and quantitative evaluation of tea. A total of 360 tea samples consisting of black, green, yellow, and oolong tea were collected from different countries. Chemometrics including linear partial least squares (PLS) regression, PLS discriminant analysis, and nonlinear radial basis function-support vector machine (RBF-SVM) were used. The RBF-SVM model achieved optimal discriminant performance for tea types with a correct classification rate of 98.33%. Wavelength selection of iteratively variable subset optimization (IVSO) exhibited considerable advantages in improving the predictive performance of catechin, caffeine, and theanine models. The IVSO-PLS regression models achieved satisfactory results for catechins and caffeine prediction, with Rp over 0.9, and RPD over 2.5. Thus, the study provided a portable and low-cost method for in-situ assessing tea quality.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Té
/
Calidad de los Alimentos
/
Espectroscopía Infrarroja Corta
/
Tecnología Química Verde
/
Análisis de los Alimentos
Tipo de estudio:
Prognostic_studies
/
Qualitative_research
Idioma:
En
Revista:
Food Chem
Año:
2021
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido