Your browser doesn't support javascript.
loading
Exciting clusters, what does off-resonance actually mean?
Yousefalizadeh, Goonay; Ahmadi, Shideh; Mosey, Nicholas J; Stamplecoskie, Kevin G.
Afiliación
  • Yousefalizadeh G; Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada. kevin.stamplecoskie@queensu.ca.
Nanoscale ; 13(1): 242-252, 2021 Jan 07.
Article en En | MEDLINE | ID: mdl-33331367
Noble metal clusters have unique photophysical properties, especially as a new class of materials for multiphoton biomedical imaging. The previously studied Au25SR18 exhibits "giant" two-photon absorbance cross sections. Herein, we investigate the origins of the large two photon absorption for Au25SR18, as well as 10 other Au and Ag clusters using femtosecond pump/probe transient absorption spectroscopy (fsTAS). Excited state absorbance (ESA) ubiquitous to thiolated Au and Ag clusters is used herein as an optical signature of two-photon absorbances of the 11 different Au and Ag clusters, which does not require high quantum yields of emission. The large selection of clusters, studied with a single laser system, allows us to draw conclusions on the role of the particular metal, cluster size/structure, and the effects of the ligands on the ability to absorb multiple NIR photons. The use of a laser with a 1028 nm excitation also allows us to investigate the dramatic effect of excitation wavelength and explain why laser wavelength has led to large variances in the non-linear responses reported for clusters to date. We discuss the double resonance mechanism, responsible for giant two photon absorbance cross-sections, helping match properties of metal clusters with experimental conditions for maximizing signal/response in multiphoton applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2021 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2021 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Reino Unido