Your browser doesn't support javascript.
loading
Cold-Resistant Nitrogen/Sulfur Dual-Doped Graphene Fiber Supercapacitors with Solar-Thermal Energy Conversion Effect.
Zhao, Tianyu; Yang, Dongzhi; Xu, Ting; Zhang, Ming; Zhang, Shiyi; Qin, Liyuan; Yu, Zhong-Zhen.
Afiliación
  • Zhao T; State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
  • Yang D; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
  • Xu T; State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
  • Zhang M; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
  • Zhang S; State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
  • Qin L; State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
  • Yu ZZ; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Chemistry ; 27(10): 3473-3482, 2021 Feb 15.
Article en En | MEDLINE | ID: mdl-33347672
ABSTRACT
Although graphene fiber-based supercapacitors are promising for wearable electronic devices, the low energy density of electrodes and poor cold resistance of aqueous electrolytes limit their wide application in cold environments. Herein, porous nitrogen/sulfur dual-doped graphene fibers (NS-GFs) are synthesized by hydrothermal self-assembly followed by thermal annealing, exhibiting an excellent capacitive performance of 401 F cm-3 at 400 mA cm-3 because of the synergistic effect of heteroatom dual-doping. The assembled symmetric all-solid-state supercapacitor with polyvinyl alcohol/H2 SO4 /graphene oxide gel electrolyte exhibits a high capacitance of 221 F cm-3 and a high energy density of 7.7 mWh cm-3 at 80 mA cm-3 . Interestingly, solar-thermal energy conversion of the electrolyte with 0.1 wt % graphene oxide extends the operating temperature range of the supercapacitor to 0 °C. Furthermore, the photocatalysis effect of the dual-doped heteroatoms increases the capacitance of NS-GFs. At an ambient temperature of 0 °C, the capacitance increases from 0 to 182 F cm-3 under 1 sun irradiation because of the excellent solar light absorption and efficient solar-thermal energy conversion of graphene oxide, preventing the aqueous electrolyte from freezing. The flexible supercapacitor exhibits a long cycle life, good bending resistance, reliable scalability, and ability to power visual electronics, showing great potential for outdoor electronics in cold environments.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2021 Tipo del documento: Article