Your browser doesn't support javascript.
loading
Salinity Effects on Guard Cell Proteome in Chenopodium quinoa.
Rasouli, Fatemeh; Kiani-Pouya, Ali; Shabala, Lana; Li, Leiting; Tahir, Ayesha; Yu, Min; Hedrich, Rainer; Chen, Zhonghua; Wilson, Richard; Zhang, Heng; Shabala, Sergey.
Afiliación
  • Rasouli F; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
  • Kiani-Pouya A; Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia.
  • Shabala L; Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
  • Li L; Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia.
  • Tahir A; Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
  • Yu M; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
  • Hedrich R; Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia.
  • Chen Z; Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
  • Wilson R; Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan.
  • Zhang H; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
  • Shabala S; Institute for Molecular Plant Physiology and Biophysics, University Wuerzburg, 97082 Wuerzburg, Germany.
Int J Mol Sci ; 22(1)2021 Jan 04.
Article en En | MEDLINE | ID: mdl-33406687
Epidermal fragments enriched in guard cells (GCs) were isolated from the halophyte quinoa (Chenopodium quinoa Wild.) species, and the response at the proteome level was studied after salinity treatment of 300 mM NaCl for 3 weeks. In total, 2147 proteins were identified, of which 36% were differentially expressed in response to salinity stress in GCs. Up and downregulated proteins included signaling molecules, enzyme modulators, transcription factors and oxidoreductases. The most abundant proteins induced by salt treatment were desiccation-responsive protein 29B (50-fold), osmotin-like protein OSML13 (13-fold), polycystin-1, lipoxygenase, alpha-toxin, and triacylglycerol lipase (PLAT) domain-containing protein 3-like (eight-fold), and dehydrin early responsive to dehydration (ERD14) (eight-fold). Ten proteins related to the gene ontology term "response to ABA" were upregulated in quinoa GC; this included aspartic protease, phospholipase D and plastid-lipid-associated protein. Additionally, seven proteins in the sucrose-starch pathway were upregulated in the GC in response to salinity stress, and accumulation of tryptophan synthase and L-methionine synthase (enzymes involved in the amino acid biosynthesis) was observed. Exogenous application of sucrose and tryptophan, L-methionine resulted in reduction in stomatal aperture and conductance, which could be advantageous for plants under salt stress. Eight aspartic proteinase proteins were highly upregulated in GCs of quinoa, and exogenous application of pepstatin A (an inhibitor of aspartic proteinase) was accompanied by higher oxidative stress and extremely low stomatal aperture and conductance, suggesting a possible role of aspartic proteinase in mitigating oxidative stress induced by saline conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Proteoma / Chenopodium quinoa / Salinidad / Tolerancia a la Sal / Estrés Salino Tipo de estudio: Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Proteoma / Chenopodium quinoa / Salinidad / Tolerancia a la Sal / Estrés Salino Tipo de estudio: Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza