Your browser doesn't support javascript.
loading
Driving energetically unfavorable dehydrogenation dynamics with plasmonics.
Sytwu, Katherine; Vadai, Michal; Hayee, Fariah; Angell, Daniel K; Dai, Alan; Dixon, Jefferson; Dionne, Jennifer A.
Afiliación
  • Sytwu K; Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305, USA.
  • Vadai M; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.
  • Hayee F; Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305, USA.
  • Angell DK; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.
  • Dai A; Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA.
  • Dixon J; Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA.
  • Dionne JA; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA. jdionne@stanford.edu.
Science ; 371(6526): 280-283, 2021 01 15.
Article en En | MEDLINE | ID: mdl-33446555
Nanoparticle surface structure and geometry generally dictate where chemical transformations occur, with higher chemical activity at sites with lower activation energies. Here, we show how optical excitation of plasmons enables spatially modified phase transformations, activating otherwise energetically unfavorable sites. We have designed a crossed-bar Au-PdH x antenna-reactor system that localizes electromagnetic enhancement away from the innately reactive PdH x nanorod tips. Using optically coupled in situ environmental transmission electron microscopy, we track the dehydrogenation of individual antenna-reactor pairs with varying optical illumination intensity, wavelength, and hydrogen pressure. Our in situ experiments show that plasmons enable new catalytic sites, including dehydrogenation at the nanorod faces. Molecular dynamics simulations confirm that these new nucleation sites are energetically unfavorable in equilibrium and only accessible through tailored plasmonic excitation.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos