Your browser doesn't support javascript.
loading
A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation.
Hori, Sharon S; Tong, Ling; Swaminathan, Srividya; Liebersbach, Mariola; Wang, Jingjing; Gambhir, Sanjiv S; Felsher, Dean W.
Afiliación
  • Hori SS; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA. shori@stanford.edu.
  • Tong L; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA. shori@stanford.edu.
  • Swaminathan S; Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA. shori@stanford.edu.
  • Liebersbach M; Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
  • Wang J; Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
  • Gambhir SS; Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
  • Felsher DW; Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, CA, USA.
Sci Rep ; 11(1): 1341, 2021 01 14.
Article en En | MEDLINE | ID: mdl-33446671
The targeted inactivation of individual oncogenes can elicit regression of cancers through a phenomenon called oncogene addiction. Oncogene addiction is mediated by cell-autonomous and immune-dependent mechanisms. Therapeutic resistance to oncogene inactivation leads to recurrence but can be counteracted by immune surveillance. Predicting the timing of resistance will provide valuable insights in developing effective cancer treatments. To provide a quantitative understanding of cancer response to oncogene inactivation, we developed a new 3-compartment mathematical model of oncogene-driven tumor growth, regression and recurrence, and validated the model using a MYC-driven transgenic mouse model of T-cell acute lymphoblastic leukemia. Our mathematical model uses imaging-based measurements of tumor burden to predict the relative number of drug-sensitive and drug-resistant cancer cells in MYC-dependent states. We show natural killer (NK) cell adoptive therapy can delay cancer recurrence by reducing the net-growth rate of drug-resistant cells. Our studies provide a novel way to evaluate combination therapy for personalized cancer treatment.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Proto-Oncogénicas c-myc / Resistencia a Antineoplásicos / Leucemia-Linfoma Linfoblástico de Células T Precursoras / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Proto-Oncogénicas c-myc / Resistencia a Antineoplásicos / Leucemia-Linfoma Linfoblástico de Células T Precursoras / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido