Your browser doesn't support javascript.
loading
Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repair.
Safari, Narges; Golafshan, Nasim; Kharaziha, Mahshid; Reza Toroghinejad, Mohammad; Utomo, Lizette; Malda, Jos; Castilho, Miguel.
Afiliación
  • Safari N; Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
  • Golafshan N; Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
  • Kharaziha M; Regenerative Medicine Utrecht, 3584 CT Utrecht, The Netherlands.
  • Reza Toroghinejad M; Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
  • Utomo L; Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
  • Malda J; Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
  • Castilho M; Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
ACS Biomater Sci Eng ; 6(11): 6253-6262, 2020 11 09.
Article en En | MEDLINE | ID: mdl-33449672
Magnesium (Mg)-based alloys are promising biodegradable materials for bone repair applications. However, due to their rapid degradation and high corrosion rate, Mg-based alloys are typically associated with in vivo infections and implant failure. This study evaluated the synergistic stability and anti-inflammatory properties that could potentially be achieved by the modification of the Mg alloy with graphene nanoparticles (Gr). Incorporation of low dosages of Gr (0.18 and 0.50 wt %) in a Mg alloy with aluminum (Al, 1 wt %) and copper (Cu, 0.25 wt %) was successfully achieved by a spark plasma sintering (SPS) method. Notably, the degradation rate of the Mg-based alloys was reduced approximately 4-fold and the bactericidal activity was enhanced up to 5-fold with incorporation of only 0.18 wt % Gr to the Mg-1Al-Cu matrix. Moreover, the modified Mg-based nanocomposites with 0.18 wt % Gr demonstrated compressive properties within the range of native cancellous bone (modulus of approximately 6 GPa), whereas in vitro studies with human mesenchymal stromal cells (hMSCs) showed high cytocompatibility and superior osteogenic properties compared to non-Gr-modified Mg-1Al-Cu implants. Overall, this study provides foundations for the fabrication of stable, yet fully resorbable, Mg-based bone implants that could reduce implant-associated infections.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanocompuestos / Grafito Límite: Humans Idioma: En Revista: ACS Biomater Sci Eng Año: 2020 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanocompuestos / Grafito Límite: Humans Idioma: En Revista: ACS Biomater Sci Eng Año: 2020 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Estados Unidos