Your browser doesn't support javascript.
loading
Optogenetics in Sinorhizobium meliloti Enables Spatial Control of Exopolysaccharide Production and Biofilm Structure.
Pirhanov, Azady; Bridges, Charles M; Goodwin, Reed A; Guo, Yi-Syuan; Furrer, Jessica; Shor, Leslie M; Gage, Daniel J; Cho, Yong Ku.
Afiliación
  • Pirhanov A; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.
  • Bridges CM; Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, United States.
  • Goodwin RA; Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, United States.
  • Guo YS; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.
  • Furrer J; Department of Computer Science, Physics, and Engineering, Benedict College, Columbia, South Carolina 29204, United States.
  • Shor LM; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.
  • Gage DJ; Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.
  • Cho YK; Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, United States.
ACS Synth Biol ; 10(2): 345-356, 2021 02 19.
Article en En | MEDLINE | ID: mdl-33465305
ABSTRACT
Microorganisms play a vital role in shaping the soil environment and enhancing plant growth by interacting with plant root systems. Because of the vast diversity of cell types involved, combined with dynamic and spatial heterogeneity, identifying the causal contribution of a defined factor, such as a microbial exopolysaccharide (EPS), remains elusive. Synthetic approaches that enable orthogonal control of microbial pathways are a promising means to dissect such complexity. Here we report the implementation of a synthetic, light-activated, transcriptional control platform using the blue-light responsive DNA binding protein EL222 in the nitrogen fixing soil bacterium Sinorhizobium meliloti. By fine-tuning the system, we successfully achieved optical control of an EPS production pathway without significant basal expression under noninducing (dark) conditions. Optical control of EPS recapitulated important behaviors such as a mucoid plate phenotype and formation of structured biofilms, enabling spatial control of biofilm structures in S. meliloti. The successful implementation of optically controlled gene expression in S. meliloti enables systematic investigation of how genotype and microenvironmental factors together shape phenotype in situ.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polisacáridos Bacterianos / Transducción de Señal / Sinorhizobium meliloti / Biopelículas / Optogenética Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Synth Biol Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polisacáridos Bacterianos / Transducción de Señal / Sinorhizobium meliloti / Biopelículas / Optogenética Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Synth Biol Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos