Your browser doesn't support javascript.
loading
An information-theoretic approach to infer the underlying interaction domain among elements from finite length trajectories in a noisy environment.
Basak, Udoy S; Sattari, Sulimon; Hossain, Md Motaleb; Horikawa, Kazuki; Komatsuzaki, Tamiki.
Afiliación
  • Basak US; Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
  • Sattari S; Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan.
  • Hossain MM; Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan.
  • Horikawa K; Department of Optical Imaging, The Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima 770-8503, Japan.
  • Komatsuzaki T; Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
J Chem Phys ; 154(3): 034901, 2021 Jan 21.
Article en En | MEDLINE | ID: mdl-33499629
ABSTRACT
Transfer entropy in information theory was recently demonstrated [Basak et al., Phys. Rev. E 102, 012404 (2020)] to enable us to elucidate the interaction domain among interacting elements solely from an ensemble of trajectories. Therefore, only pairs of elements whose distances are shorter than some distance variable, termed cutoff distance, are taken into account in the computation of transfer entropies. The prediction performance in capturing the underlying interaction domain is subject to the noise level exerted on the elements and the sufficiency of statistics of the interaction events. In this paper, the dependence of the prediction performance is scrutinized systematically on noise level and the length of trajectories by using a modified Vicsek model. The larger the noise level and the shorter the time length of trajectories, the more the derivative of average transfer entropy fluctuates, which makes the identification of the interaction domain in terms of the position of global minimum of the derivative of average transfer entropy difficult. A measure to quantify the degree of strong convexity at the coarse-grained level is proposed. It is shown that the convexity score scheme can identify the interaction distance fairly well even while the position of the global minimum of the derivative of average transfer entropy does not. We also derive an analytical model to explain the relationship between the interaction domain and the change in transfer entropy that supports our cutoff distance technique to elucidate the underlying interaction domain from trajectories.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Phys Año: 2021 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Phys Año: 2021 Tipo del documento: Article País de afiliación: Japón