Thiomicrorhabdus sediminis sp. nov. and Thiomicrorhabdus xiamenensis sp. nov., novel sulfur-oxidizing bacteria isolated from coastal sediments and an emended description of the genus Thiomicrorhabdus.
Int J Syst Evol Microbiol
; 71(2)2021 Feb.
Article
en En
| MEDLINE
| ID: mdl-33502307
Two novel Gram-strain-negative and rod-shaped bacteria, designated strain G1T and G2T, were isolated from sediment samples collected from the coast of Xiamen, PR China. The cells were motile by a single polar flagellum. Growth of strain G1T occurred at 10-40 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 7.5) and with 5-1530 mM NaCl (optimum, 510 mM), while the temperature, pH and NaCl concentration ranges for G2T were 4-45 °C (optimum, 28 °C), pH 5.5-8.0 (optimum, pH 6.5) and 85-1530 mM NaCl (optimum, 340 mM). The two isolates were obligate chemolithoautotrophs capable of using thiosulfate, sulfide, elemental sulphur or tetrathionate as an energy source. Strain G1T used molecular oxygen or nitrite as an electron acceptor, while strain G2T used molecular oxygen as the sole electron acceptor. The dominant fatty acids of G1T and G2T were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16 : 0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The DNA G+C content of G1T and G2T were 45.1 and 48.3âmol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain G1T and G2T were members of the genus Thiomicrorhabdus, and most closely related to Thiomicrorhabdus hydrogeniphila MAS2T (96.0â%) and Thiomicrorhabdus indica 13-15AT (95.4â%), respectively. The 16S rRNA gene sequence similarity between strains G1T and G2T was 95.8â%. Based on the phylogenetic, genomic and phenotypic data presented here, the isolate strains represent novel species of the genus Thiomicrorhabdus, for which the names Thiomicrorhabdus sediminis sp. nov. (type strain G1T=MCCC 1A14511T=KCTC 15841T) and Thiomicrorhabdus xiamenensis sp. nov. (type strain G2T=MCCC 1A14512T=KCTC 15842T) are proposed.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Filogenia
/
Agua de Mar
/
Bacterias Reductoras del Azufre
/
Sedimentos Geológicos
/
Piscirickettsiaceae
País/Región como asunto:
Asia
Idioma:
En
Revista:
Int J Syst Evol Microbiol
Asunto de la revista:
MICROBIOLOGIA
Año:
2021
Tipo del documento:
Article
Pais de publicación:
Reino Unido