Your browser doesn't support javascript.
loading
Ambient Light Regulates Retinal Dopamine Signaling and Myopia Susceptibility.
Landis, Erica G; Park, Han Na; Chrenek, Micah; He, Li; Sidhu, Curran; Chakraborty, Ranjay; Strickland, Ryan; Iuvone, P Michael; Pardue, Machelle T.
Afiliación
  • Landis EG; Department of Neuroscience, Emory University, Atlanta, Georgia, United States.
  • Park HN; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States.
  • Chrenek M; Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.
  • He L; Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.
  • Sidhu C; Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.
  • Chakraborty R; Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.
  • Strickland R; Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.
  • Iuvone PM; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States.
  • Pardue MT; Department of Neuroscience, Emory University, Atlanta, Georgia, United States.
Invest Ophthalmol Vis Sci ; 62(1): 28, 2021 01 04.
Article en En | MEDLINE | ID: mdl-33502461
Purpose: Exposure to high-intensity or outdoor lighting has been shown to decrease the severity of myopia in both human epidemiological studies and animal models. Currently, it is not fully understood how light interacts with visual signaling to impact myopia. Previous work performed in the mouse retina has demonstrated that functional rod photoreceptors are needed to develop experimentally-induced myopia, alluding to an essential role for rod signaling in refractive development. Methods: To determine whether dim rod-dominated illuminance levels influence myopia susceptibility, we housed male C57BL/6J mice under 12:12 light/dark cycles with scotopic (1.6 × 10-3 candela/m2), mesopic (1.6 × 101 cd/m2), or photopic (4.7 × 103 cd/m2) lighting from post-natal day 23 (P23) to P38. Half the mice received monocular exposure to -10 diopter (D) lens defocus from P28-38. Molecular assays to measure expression and content of DA-related genes and protein were conducted to determine how illuminance and lens defocus alter dopamine (DA) synthesis, storage, uptake, and degradation and affect myopia susceptibility in mice. Results: We found that mice exposed to either scotopic or photopic lighting developed significantly less severe myopic refractive shifts (lens treated eye minus contralateral eye; -1.62 ± 0.37D and -1.74 ± 0.44D, respectively) than mice exposed to mesopic lighting (-3.61 ± 0.50D; P < 0.005). The 3,4-dihydroxyphenylacetic acid /DA ratio, indicating DA activity, was highest under photopic light regardless of lens defocus treatment (controls: 0.09 ± 0.011 pg/mg, lens defocus: 0.08 ± 0.008 pg/mg). Conclusions: Lens defocus interacted with ambient conditions to differentially alter myopia susceptibility and DA-related genes and proteins. Collectively, these results show that scotopic and photopic lighting protect against lens-induced myopia, potentially indicating that a broad range of light levels are important in refractive development.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Retina / Dopamina / Visión de Colores / Visión Mesópica / Visión Nocturna / Luz / Miopía Límite: Animals Idioma: En Revista: Invest Ophthalmol Vis Sci Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Retina / Dopamina / Visión de Colores / Visión Mesópica / Visión Nocturna / Luz / Miopía Límite: Animals Idioma: En Revista: Invest Ophthalmol Vis Sci Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos