Your browser doesn't support javascript.
loading
TRPM4 mediates a subthreshold membrane potential oscillation in respiratory chemoreceptor neurons that drives pacemaker firing and breathing.
Li, Keyong; Abbott, Stephen B G; Shi, Yingtang; Eggan, Pierce; Gonye, Elizabeth C; Bayliss, Douglas A.
Afiliación
  • Li K; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
  • Abbott SBG; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
  • Shi Y; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
  • Eggan P; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
  • Gonye EC; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
  • Bayliss DA; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA. Electronic address: dab3y@virginia.edu.
Cell Rep ; 34(5): 108714, 2021 02 02.
Article en En | MEDLINE | ID: mdl-33535052
ABSTRACT
Brainstem networks that control regular tidal breathing depend on excitatory drive, including from tonically active, CO2/H+-sensitive neurons of the retrotrapezoid nucleus (RTN). Here, we examine intrinsic ionic mechanisms underlying the metronomic firing activity characteristic of RTN neurons. In mouse brainstem slices, large-amplitude membrane potential oscillations are evident in synaptically isolated RTN neurons after blocking action potentials. The voltage-dependent oscillations are abolished by sodium replacement; blocking calcium channels (primarily L-type); chelating intracellular Ca2+; and inhibiting TRPM4, a Ca2+-dependent cationic channel. Likewise, oscillation voltage waveform currents are sensitive to calcium and TRPM4 channel blockers. Extracellular acidification and serotonin (5-HT) evoke membrane depolarization that augments TRPM4-dependent oscillatory activity and action potential discharge. Finally, inhibition of TRPM4 channels in the RTN of anesthetized mice reduces central respiratory output. These data implicate TRPM4 in a subthreshold oscillation that supports the pacemaker-like firing of RTN neurons required for basal, CO2-stimulated, and state-dependent breathing.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Respiración / Células Quimiorreceptoras / Canales Catiónicos TRPM / Potenciales de la Membrana / Neuronas Límite: Animals / Humans Idioma: En Revista: Cell Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Respiración / Células Quimiorreceptoras / Canales Catiónicos TRPM / Potenciales de la Membrana / Neuronas Límite: Animals / Humans Idioma: En Revista: Cell Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos