Your browser doesn't support javascript.
loading
A comprehensive overview and critical evaluation of gene regulatory network inference technologies.
Zhao, Mengyuan; He, Wenying; Tang, Jijun; Zou, Quan; Guo, Fei.
Afiliación
  • Zhao M; School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China.
  • He W; School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China.
  • Tang J; University of South Carolina, Tianjin, China.
  • Zou Q; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
  • Guo F; School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China.
Brief Bioinform ; 22(5)2021 09 02.
Article en En | MEDLINE | ID: mdl-33539514
Gene regulatory network (GRN) is the important mechanism of maintaining life process, controlling biochemical reaction and regulating compound level, which plays an important role in various organisms and systems. Reconstructing GRN can help us to understand the molecular mechanism of organisms and to reveal the essential rules of a large number of biological processes and reactions in organisms. Various outstanding network reconstruction algorithms use specific assumptions that affect prediction accuracy, in order to deal with the uncertainty of processing. In order to study why a certain method is more suitable for specific research problem or experimental data, we conduct research from model-based, information-based and machine learning-based method classifications. There are obviously different types of computational tools that can be generated to distinguish GRNs. Furthermore, we discuss several classical, representative and latest methods in each category to analyze core ideas, general steps, characteristics, etc. We compare the performance of state-of-the-art GRN reconstruction technologies on simulated networks and real networks under different scaling conditions. Through standardized performance metrics and common benchmarks, we quantitatively evaluate the stability of various methods and the sensitivity of the same algorithm applying to different scaling networks. The aim of this study is to explore the most appropriate method for a specific GRN, which helps biologists and medical scientists in discovering potential drug targets and identifying cancer biomarkers.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Regulación de la Expresión Génica / Biología Computacional / Redes Reguladoras de Genes / Transcriptoma / Aprendizaje Automático Tipo de estudio: Prognostic_studies Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Regulación de la Expresión Génica / Biología Computacional / Redes Reguladoras de Genes / Transcriptoma / Aprendizaje Automático Tipo de estudio: Prognostic_studies Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido