Your browser doesn't support javascript.
loading
Global mapping of protein-metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity.
Luzarowski, Marcin; Vicente, Rubén; Kiselev, Andrei; Wagner, Mateusz; Schlossarek, Dennis; Erban, Alexander; de Souza, Leonardo Perez; Childs, Dorothee; Wojciechowska, Izabela; Luzarowska, Urszula; Górka, Michal; Sokolowska, Ewelina M; Kosmacz, Monika; Moreno, Juan C; Brzezinska, Aleksandra; Vegesna, Bhavana; Kopka, Joachim; Fernie, Alisdair R; Willmitzer, Lothar; Ewald, Jennifer C; Skirycz, Aleksandra.
Afiliación
  • Luzarowski M; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany. luzarowski@mpimp-golm.mpg.de.
  • Vicente R; Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Kiselev A; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Wagner M; Laboratoire de Recherche en Sciences Végétales (LRSV), UPS/CNRS, UMR, Castanet Tolosan, France.
  • Schlossarek D; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Erban A; University of Wroclaw, Faculty of Biotechnology, Laboratory of Medical Biology, Wroclaw, Poland.
  • de Souza LP; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Childs D; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Wojciechowska I; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Luzarowska U; Department of Genome Biology, European Molecular Biology Laboratory, Heidelberg, Germany.
  • Górka M; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Sokolowska EM; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Kosmacz M; Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
  • Moreno JC; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Brzezinska A; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Vegesna B; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Kopka J; Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
  • Fernie AR; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Willmitzer L; Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
  • Ewald JC; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Skirycz A; Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
Commun Biol ; 4(1): 181, 2021 02 10.
Article en En | MEDLINE | ID: mdl-33568709
Protein-metabolite interactions are of crucial importance for all cellular processes but remain understudied. Here, we applied a biochemical approach named PROMIS, to address the complexity of the protein-small molecule interactome in the model yeast Saccharomyces cerevisiae. By doing so, we provide a unique dataset, which can be queried for interactions between 74 small molecules and 3982 proteins using a user-friendly interface available at https://promis.mpimp-golm.mpg.de/yeastpmi/ . By interpolating PROMIS with the list of predicted protein-metabolite interactions, we provided experimental validation for 225 binding events. Remarkably, of the 74 small molecules co-eluting with proteins, 36 were proteogenic dipeptides. Targeted analysis of a representative dipeptide, Ser-Leu, revealed numerous protein interactors comprising chaperones, proteasomal subunits, and metabolic enzymes. We could further demonstrate that Ser-Leu binding increases activity of a glycolytic enzyme phosphoglycerate kinase (Pgk1). Consistent with the binding analysis, Ser-Leu supplementation leads to the acute metabolic changes and delays timing of a diauxic shift. Supported by the dipeptide accumulation analysis our work attests to the role of Ser-Leu as a metabolic regulator at the interface of protein degradation and central metabolism.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfoglicerato Quinasa / Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / Metabolismo Energético Tipo de estudio: Prognostic_studies Idioma: En Revista: Commun Biol Año: 2021 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfoglicerato Quinasa / Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / Metabolismo Energético Tipo de estudio: Prognostic_studies Idioma: En Revista: Commun Biol Año: 2021 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido