Your browser doesn't support javascript.
loading
A critical role for linker DNA in higher-order folding of chromatin fibers.
Brouwer, Thomas; Pham, Chi; Kaczmarczyk, Artur; de Voogd, Willem-Jan; Botto, Margherita; Vizjak, Petra; Mueller-Planitz, Felix; van Noort, John.
Afiliación
  • Brouwer T; Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
  • Pham C; Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
  • Kaczmarczyk A; Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
  • de Voogd WJ; Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
  • Botto M; Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
  • Vizjak P; Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
  • Mueller-Planitz F; Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
  • van Noort J; Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
Nucleic Acids Res ; 49(5): 2537-2551, 2021 03 18.
Article en En | MEDLINE | ID: mdl-33589918
ABSTRACT
Nucleosome-nucleosome interactions drive the folding of nucleosomal arrays into dense chromatin fibers. A better physical account of the folding of chromatin fibers is necessary to understand the role of chromatin in regulating DNA transactions. Here, we studied the unfolding pathway of regular chromatin fibers as a function of single base pair increments in linker length, using both rigid base-pair Monte Carlo simulations and single-molecule force spectroscopy. Both computational and experimental results reveal a periodic variation of the folding energies due to the limited flexibility of the linker DNA. We show that twist is more restrictive for nucleosome stacking than bend, and find the most stable stacking interactions for linker lengths of multiples of 10 bp. We analyzed nucleosomes stacking in both 1- and 2-start topologies and show that stacking preferences are determined by the length of the linker DNA. Moreover, we present evidence that the sequence of the linker DNA also modulates nucleosome stacking and that the effect of the deletion of the H4 tail depends on the linker length. Importantly, these results imply that nucleosome positioning in vivo not only affects the phasing of nucleosomes relative to DNA but also directs the higher-order structure of chromatin.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Cromatina / Nucleosomas Tipo de estudio: Health_economic_evaluation Idioma: En Revista: Nucleic Acids Res Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Cromatina / Nucleosomas Tipo de estudio: Health_economic_evaluation Idioma: En Revista: Nucleic Acids Res Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos