Your browser doesn't support javascript.
loading
Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability.
DeVries, Zachary; Locke, Eric; Hoda, Mohamad; Moravek, Dita; Phan, Kim; Stratton, Alexandra; Kingwell, Stephen; Wai, Eugene K; Phan, Philippe.
Afiliación
  • DeVries Z; Ottawa Spine Collaborative Analytics Network, The Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9.
  • Locke E; Ottawa Spine Collaborative Analytics Network, The Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9.
  • Hoda M; Ottawa Spine Collaborative Analytics Network, The Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9.
  • Moravek D; Ottawa Spine Collaborative Analytics Network, The Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9; Ottawa Hospital Research Institute, Ottawa, ON, Canada K1Y 4E9.
  • Phan K; Ottawa Spine Collaborative Analytics Network, The Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9.
  • Stratton A; Ottawa Spine Collaborative Analytics Network, The Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9; Division of Orthopaedic Surgery, Department of Surgery, Faculty of Medicine, University of Ottawa, The Ottawa Hospital, 1053 Carling Avenue, Ottawa, ON, Canada K1Y 4E9.
  • Kingwell S; Ottawa Spine Collaborative Analytics Network, The Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9; Division of Orthopaedic Surgery, Department of Surgery, Faculty of Medicine, University of Ottawa, The Ottawa Hospital, 1053 Carling Avenue, Ottawa, ON, Canada K1Y 4E9.
  • Wai EK; Ottawa Spine Collaborative Analytics Network, The Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9; Division of Orthopaedic Surgery, Department of Surgery, Faculty of Medicine, University of Ottawa, The Ottawa Hospital, 1053 Carling Avenue, Ottawa, ON, Canada K1Y 4E9; Clinical Epidemiology Program, Ottaw
  • Phan P; Ottawa Spine Collaborative Analytics Network, The Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9; Ottawa Hospital Research Institute, Ottawa, ON, Canada K1Y 4E9; Division of Orthopaedic Surgery, Department of Surgery, Faculty of Medicine, University of Ottawa, The Ottawa Hospital, 1053 Carling Avenue,
Spine J ; 21(7): 1135-1142, 2021 07.
Article en En | MEDLINE | ID: mdl-33601012
ABSTRACT

BACKGROUND:

With spinal surgery rates increasing in North America, models that are able to accurately predict which patients are at greater risk of developing complications are highly warranted. However, the previously published methods which have used large, multi-centre databases to develop their prediction models have relied on the receiver operator characteristics curve with the associated area under the curve (AUC) to assess their model's performance. Recently, it has been found that a precision-recall curve with the associated F1-score could provide a more realistic analysis for these models.

PURPOSE:

To develop a logistic regression (LR) model for the prediction of complications following posterior lumbar spine surgery and to then assess for any difference in performance of the model when using the AUC versus the F1-score. STUDY

DESIGN:

Retrospective review of a prospective cohort. PATIENT SAMPLE The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) registry was used. All patients that underwent posterior lumbar spine surgery between 2005 to 2016 with appropriate data were included. OUTCOME

MEASURES:

Both the AUC and F1-score were utilized to assess the prognostic performance of the prediction model.

METHODS:

In order to develop the LR model used to predict a complication during or following spine surgery, 19 variables were selected by three orthopedic spine surgeons from the NSQIP registry. Two datasets were developed for this

analysis:

(1) an imbalanced dataset, which was taken directly from the NSQIP registry, and (2) a down-sampled set. The purpose of the down-sampled set was to balance the data in order to evaluate whether balancing the data had an effect on model performance. The AUC and F1-score were applied to both of these datasets.

RESULTS:

Within the NSQIP database, 52,787 spine surgery cases were identified of which only 10% of these cases had complications during surgery. Applying the LR model showed a large difference between the AUC (0.69) and the F1 score (0.075) on the imbalanced dataset. However, no major differences existed between the AUC and F1-score when the data was balanced and the LR model was reapplied (0.69 and 0.62, AUC and F1-score, respectively).

CONCLUSIONS:

The F1-score detected a drastically lower performance for the prediction of complications when using the imbalanced data, but detected a performance similar to the AUC level when balancing techniques were utilized for the dataset. This difference is due to a low precision score when many false positive classifications are present, which is not identified when using the AUC value. This lowers the utility of the AUC score, as many of the datasets used in medicine are imbalanced. Therefore, we recommend using the F1-score on large, prospective databases when the data is imbalanced with a large amount of true negative classifications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Complicaciones Posoperatorias / Columna Vertebral Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: Spine J Asunto de la revista: ORTOPEDIA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Complicaciones Posoperatorias / Columna Vertebral Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: Spine J Asunto de la revista: ORTOPEDIA Año: 2021 Tipo del documento: Article