Your browser doesn't support javascript.
loading
The Srs2 helicase dampens DNA damage checkpoint by recycling RPA from chromatin.
Dhingra, Nalini; Kuppa, Sahiti; Wei, Lei; Pokhrel, Nilisha; Baburyan, Silva; Meng, Xiangzhou; Antony, Edwin; Zhao, Xiaolan.
Afiliación
  • Dhingra N; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.
  • Kuppa S; Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104.
  • Wei L; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.
  • Pokhrel N; Department of Biological Sciences, Marquette University, Milwaukee, WI 53201.
  • Baburyan S; Department of Biological Sciences, City University of New York Hunter College, New York, NY 10065.
  • Meng X; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.
  • Antony E; Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104.
  • Zhao X; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; zhaox1@mskcc.org.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article en En | MEDLINE | ID: mdl-33602817
ABSTRACT
The DNA damage checkpoint induces many cellular changes to cope with genotoxic stress. However, persistent checkpoint signaling can be detrimental to growth partly due to blockage of cell cycle resumption. Checkpoint dampening is essential to counter such harmful effects, but its mechanisms remain to be understood. Here, we show that the DNA helicase Srs2 removes a key checkpoint sensor complex, RPA, from chromatin to down-regulate checkpoint signaling in budding yeast. The Srs2 and RPA antagonism is supported by their numerous suppressive genetic interactions. Importantly, moderate reduction of RPA binding to single-strand DNA (ssDNA) rescues hypercheckpoint signaling caused by the loss of Srs2 or its helicase activity. This rescue correlates with a reduction in the accumulated RPA and the associated checkpoint kinase on chromatin in srs2 mutants. Moreover, our data suggest that Srs2 regulation of RPA is separable from its roles in recombinational repair and critically contributes to genotoxin resistance. We conclude that dampening checkpoint by Srs2-mediated RPA recycling from chromatin aids cellular survival of genotoxic stress and has potential implications in other types of DNA transactions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Daño del ADN / ADN de Cadena Simple / Cromatina / ADN Helicasas / Proteínas de Saccharomyces cerevisiae / Proteína de Replicación A Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Daño del ADN / ADN de Cadena Simple / Cromatina / ADN Helicasas / Proteínas de Saccharomyces cerevisiae / Proteína de Replicación A Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article