Your browser doesn't support javascript.
loading
An all-epitaxial nitride heterostructure with concurrent quantum Hall effect and superconductivity.
Dang, Phillip; Khalsa, Guru; Chang, Celesta S; Katzer, D Scott; Nepal, Neeraj; Downey, Brian P; Wheeler, Virginia D; Suslov, Alexey; Xie, Andy; Beam, Edward; Cao, Yu; Lee, Cathy; Muller, David A; Xing, Huili Grace; Meyer, David J; Jena, Debdeep.
Afiliación
  • Dang P; School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA. pd382@cornell.edu gsk63@cornell.edu djena@cornell.edu.
  • Khalsa G; Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA. pd382@cornell.edu gsk63@cornell.edu djena@cornell.edu.
  • Chang CS; School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
  • Katzer DS; Department of Physics, Cornell University, Ithaca, NY 14853, USA.
  • Nepal N; United States Naval Research Laboratory, Washington, DC 20375, USA.
  • Downey BP; United States Naval Research Laboratory, Washington, DC 20375, USA.
  • Wheeler VD; United States Naval Research Laboratory, Washington, DC 20375, USA.
  • Suslov A; United States Naval Research Laboratory, Washington, DC 20375, USA.
  • Xie A; National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA.
  • Beam E; Qorvo, Richardson, TX 75080, USA.
  • Cao Y; Qorvo, Richardson, TX 75080, USA.
  • Lee C; Qorvo, Richardson, TX 75080, USA.
  • Muller DA; Qorvo, Richardson, TX 75080, USA.
  • Xing HG; School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
  • Meyer DJ; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
  • Jena D; Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
Sci Adv ; 7(8)2021 Feb.
Article en En | MEDLINE | ID: mdl-33608281
Creating seamless heterostructures that exhibit the quantum Hall effect and superconductivity is highly desirable for future electronics based on topological quantum computing. However, the two topologically robust electronic phases are typically incompatible owing to conflicting magnetic field requirements. Combined advances in the epitaxial growth of a nitride superconductor with a high critical temperature and a subsequent nitride semiconductor heterostructure of metal polarity enable the observation of clean integer quantum Hall effect in the polarization-induced two-dimensional (2D) electron gas of the high-electron mobility transistor. Through individual magnetotransport measurements of the spatially separated GaN 2D electron gas and superconducting NbN layers, we find a small window of magnetic fields and temperatures in which the epitaxial layers retain their respective quantum Hall and superconducting properties. Its analysis indicates that in epitaxial nitride superconductor/semiconductor heterostructures, this window can be significantly expanded, creating an industrially viable platform for robust quantum devices that exploit topologically protected transport.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos