Your browser doesn't support javascript.
loading
Radiomic Machine Learning Classifiers in Spine Bone Tumors: A Multi-Software, Multi-Scanner Study.
Chianca, Vito; Cuocolo, Renato; Gitto, Salvatore; Albano, Domenico; Merli, Ilaria; Badalyan, Julietta; Cortese, Maria Cristina; Messina, Carmelo; Luzzati, Alessandro; Parafioriti, Antonina; Galbusera, Fabio; Brunetti, Arturo; Sconfienza, Luca Maria.
Afiliación
  • Chianca V; Clinica di Radiologia EOC, Istituto di Imaging della Svizzera Italiana (IIMSI), Lugano, Switzerland; Ospedale Evangelico Betania, Napoli, Italy.
  • Cuocolo R; Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli (")Federico II", Napoli, Italy; Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli "Federico II", N
  • Gitto S; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy. Electronic address: sal.gitto@gmail.com.
  • Albano D; IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Italy.
  • Merli I; UOC Radiodiagnostica, Presidio San Carlo Borromeo, ASST Santi Paolo e Carlo, Milano, Italy.
  • Badalyan J; International Medical School, University of Milan and Russian National Research Medical University, Milano, Italy.
  • Cortese MC; Istituto di Radiologia, Fondazione Policlinico A. Gemelli IRCCS - Università Cattolica Sacro Cuore, Roma, Italy.
  • Messina C; IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.
  • Luzzati A; IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.
  • Parafioriti A; Anatomia Patologica, ASST Pini-CTO, Milano, Italy.
  • Galbusera F; IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.
  • Brunetti A; Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli (")Federico II", Napoli, Italy.
  • Sconfienza LM; IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.
Eur J Radiol ; 137: 109586, 2021 Apr.
Article en En | MEDLINE | ID: mdl-33610852
PURPOSE: Spinal lesion differential diagnosis remains challenging even in MRI. Radiomics and machine learning (ML) have proven useful even in absence of a standardized data mining pipeline. We aimed to assess ML diagnostic performance in spinal lesion differential diagnosis, employing radiomic data extracted by different software. METHODS: Patients undergoing MRI for a vertebral lesion were retrospectively analyzed (n = 146, 67 males, 79 females; mean age 63 ±â€¯16 years, range 8-89 years) and constituted the train (n = 100) and internal test cohorts (n = 46). Part of the latter had additional prior exams which constituted a multi-scanner, external test cohort (n = 35). Lesions were labeled as benign or malignant (2-label classification), and benign, primary malignant or metastases (3-label classification) for classification analyses. Features extracted via 3D Slicer heterogeneityCAD module (hCAD) and PyRadiomics were independently used to compare different combinations of feature selection methods and ML classifiers (n = 19). RESULTS: In total, 90 and 1548 features were extracted by hCAD and PyRadiomics, respectively. The best feature selection method-ML algorithm combination was selected by 10 iterations of 10-fold cross-validation in the training data. For the 2-label classification ML obtained 94% accuracy in the internal test cohort, using hCAD data, and 86% in the external one. For the 3-label classification, PyRadiomics data allowed for 80% and 69% accuracy in the internal and external test sets, respectively. CONCLUSIONS: MRI radiomics combined with ML may be useful in spinal lesion assessment. More robust pre-processing led to better consistency despite scanner and protocol heterogeneity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Óseas / Aprendizaje Automático Tipo de estudio: Guideline / Observational_studies Límite: Adolescent / Adult / Aged / Aged80 / Child / Female / Humans / Male / Middle aged Idioma: En Revista: Eur J Radiol Año: 2021 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Irlanda

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Óseas / Aprendizaje Automático Tipo de estudio: Guideline / Observational_studies Límite: Adolescent / Adult / Aged / Aged80 / Child / Female / Humans / Male / Middle aged Idioma: En Revista: Eur J Radiol Año: 2021 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Irlanda