Your browser doesn't support javascript.
loading
Glycogen synthase kinase 3 beta inhibitor SB216763 improves Kir2.1 expression after myocardia infraction in rats.
Chang, Cheng; Wang, Shu-Hui; Xu, Li-Na; Su, Xue-Ling; Zeng, Yi-Fan; Wang, Peng; Zhang, Li-Rong; Han, Sheng-Na.
Afiliación
  • Chang C; Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
  • Wang SH; Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
  • Xu LN; Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
  • Su XL; Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
  • Zeng YF; Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
  • Wang P; Basic Medical Department, School of Nursing, Zhengzhou University, Zhengzhou, 450001, China.
  • Zhang LR; Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
  • Han SN; Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. hanshengna@126.com.
J Interv Card Electrophysiol ; 63(2): 239-248, 2022 Mar.
Article en En | MEDLINE | ID: mdl-33611692
ABSTRACT

BACKGROUND:

Abnormal ion channel currents caused by myocardial electrical remodeling is one of the main causes of malignant arrhythmias. Glycogen synthase kinase 3ß (GSK-3ß) is the main therapeutic target following ischemia as it regulates nerve cell channels. However, few studies have investigated its role in myocardial electrical remodeling. The present study aimed to investigate the role of GSK-3ß in a rat myocardial infarction (MI)-induced electrical remodeling and potential effects on cardiac ionic channels including KCNJ2/Kir2.1/IK1.

METHODS:

Ligation of the left anterior descending artery in rats was performed to establish a MI model. The rats were randomly divided into three groups, the sham, MI, and MI + SB group. The animals in the latter group were administered SB216763 (GSK-3ß inhibitor) at a dose of 0.6 mg·kg-1·day-1. The ventricular function was assessed by echocardiography, electrocardiography, and histological analysis 7 days post-surgery. Serum was collected to measure lactate dehydrogenase and cardiac troponin I levels, and the mRNA and protein levels of the KCNJ2/Kir2.1/IK1 channel in the heart tissues were assessed. H9c2 cells were cultured to examine the effects of SB216763 on the protein expression of Kir2.1 channel under hypoxic conditions.

RESULTS:

The results revealed that SB216763 ameliorated acute cardiac injury and improved myocardial dysfunction. Moreover, SB216763 increased the mRNA and protein expression of Kir2.1 during MI. Furthermore, SB216763 treatment abrogated the decreased expression of Kir2.1 in H9c2 cells under hypoxic conditions.

CONCLUSIONS:

GSK-3ß inhibition upregulates Kir2.1 expression in a rat model of MI.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Indoles / Miocardio Límite: Animals / Humans Idioma: En Revista: J Interv Card Electrophysiol Asunto de la revista: CARDIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Indoles / Miocardio Límite: Animals / Humans Idioma: En Revista: J Interv Card Electrophysiol Asunto de la revista: CARDIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: China