Your browser doesn't support javascript.
loading
Comparative physiological and metabolic analyzes of two Italian ryegrass (Lolium multiflorum) cultivars with contrasting salinity tolerance.
Feng, Qijia; Song, Shurui; Yang, Yong; Amee, Maurice; Chen, Liang; Xie, Yan.
Afiliación
  • Feng Q; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
  • Song S; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.
  • Yang Y; School of Life Science, University of Chinese Academy of Sciences, Beijing, China.
  • Amee M; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
  • Chen L; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.
  • Xie Y; School of Life Science, University of Chinese Academy of Sciences, Beijing, China.
Physiol Plant ; 172(3): 1688-1699, 2021 Jul.
Article en En | MEDLINE | ID: mdl-33611798
ABSTRACT
Italian ryegrass (Lolium multiflorum) is a widely cultivated forage with high nutritional value and good palatability. Salinity, however, is a negative factor to lessen output and quality in Italian ryegrass. The aim of this study was to elucidate the salt tolerance mechanism of two Italian ryegrass cultivars, 'Abundant' and 'Angus'. Under hydroponic conditions, two cultivars of Italian ryegrass with different salt tolerance were exposed to 0 and 300 mM NaCl solution for 1 week, respectively. The results showed that salt stress decreased relative growth rate and relative water content, especially in salt-sensitive 'Angus'. The salt-tolerant 'Abundant' cultivar alleviated reactive oxygen species (ROS) induced burst and cell damage. However, 'Angus' exhibited a greater activity of superoxide dismutase (SOD) and peroxidase (POD) than 'Abundant'. Additionally, 'Abundant' exhibited higher photosynthetic efficiency than 'Angus' under salt stress condition. Salt treatment significantly increased the Na/K, Na/Mg, and Na/Ca ratios in the leaves and roots of both cultivars, with a pronounced effect in salt-sensitive 'Angus'. The metabolite analysis of leaf polar extracts revealed 41 salt responsive metabolites in both cultivars, mainly consisting of amino acids, organic acids, fatty acids, and sugars. Following exposure to salt conditions, salt-sensitive 'Angus' had a higher level of metabolites and more uniquely upregulated metabolites were detected. Based on these findings, we conclude that the 'Abundant' cultivar emerged as a favorite in saline-alkali soil, while the 'Angus' cultivar is suitable for planting in normal soil. It appears that the high salt tolerance of 'Abundant' is partly to prevent the plant from ionic homeostasis disruption.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Lolium / Tolerancia a la Sal País/Región como asunto: Europa Idioma: En Revista: Physiol Plant Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Lolium / Tolerancia a la Sal País/Región como asunto: Europa Idioma: En Revista: Physiol Plant Año: 2021 Tipo del documento: Article País de afiliación: China
...