Your browser doesn't support javascript.
loading
Adaptively Dense Feature Pyramid Network for Object Detection.
Pan, Haodong; Chen, Guangfeng; Jiang, Jue.
Afiliación
  • Pan H; College of Mechanical Engineering, Donghua University, Shanghai 201620, China.
  • Chen G; College of Mechanical Engineering, Donghua University, Shanghai 201620, China.
  • Jiang J; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10044, USA.
IEEE Access ; 7: 81132-81144, 2019.
Article en En | MEDLINE | ID: mdl-33614364
We propose a novel one-stage object detection network, called adaptively dense feature pyramid network (ADFPNet), to detect objects cross various scales. The proposed network is developed on single shot multibox detector (SSD) framework with a new proposed ADFP module, which is consisted of two components: a dense multi scales and receptive fields block (DMSRB) and an adaptively feature calibration block (AFCB). Specifically, DMSRB block extracts rich semantic information in a dense way through atrous convolutions with different atrous rates to extract dense features in multi scales and receptive fields; the AFCB block calibrate the dense features to retain features contributing more and depress features contributing less. The extensive experiments have been conducted on VOC 2007, VOC 2012, and MS COCO dataset to evaluate our method. In particular, we achieve the new state of the art accuracy with the mAP of 82.5 on VOC 2007 test set and the mAP of 36.4 on COCO test-dev set using a simple VGG-16 backbone. When testing with a lower resolution (300 × 300), we achieve an mAP of 81.1 on VOC 2007 test set with an FPS of 62.5 on an NVIDIA 1080ti GPU, which meets the requirement for real-time detection.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: IEEE Access Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: IEEE Access Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos