Your browser doesn't support javascript.
loading
Extremely Stable Luminescent Crosslinked Perovskite Nanoparticles under Harsh Environments over 1.5 Years.
Jang, Junho; Kim, Young-Hoon; Park, Sunjoong; Yoo, Dongsuk; Cho, Hyunjin; Jang, Jinhyeong; Jeong, Han Beom; Lee, Hyunhwan; Yuk, Jong Min; Park, Chan Beum; Jeon, Duk Young; Kim, Yong-Hyun; Bae, Byeong-Soo; Lee, Tae-Woo.
Afiliación
  • Jang J; Wearable Platform Materials Technology Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Kim YH; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Park S; Department of Materials Science and Engineering, Institute of Engineering Research, Research Institute of Advanced Materials, Nano Systems Institute (NSI), BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republi
  • Yoo D; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Cho H; School of Chemical and Biological Engineering, Seoul National University (SNU), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
  • Jang J; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Jeong HB; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Lee H; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Yuk JM; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Park CB; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Jeon DY; Wearable Platform Materials Technology Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Kim YH; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Bae BS; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Lee TW; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Adv Mater ; 33(3): e2005255, 2021 Jan.
Article en En | MEDLINE | ID: mdl-33617075
ABSTRACT
Organic-inorganic hybrid perovskite nanoparticles (NPs) are a very strong candidate emitter that can meet the high luminescence efficiency and high color standard of Rec.2020. However, the instability of perovskite NPs is the most critical unsolved problem that limits their practical application. Here, an extremely stable crosslinked perovskite NP (CPN) is reported that maintains high photoluminescence quantum yield for 1.5 years (>600 d) in air and in harsher liquid environments (e.g., in water, acid, or base solutions, and in various polar solvents), and for more than 100 d under 85 °C and 85% relative humidity without additional encapsulation. Unsaturated hydrocarbons in both the acid and base ligands of NPs are chemically crosslinked with a methacrylate-functionalized matrix, which prevents decomposition of the perovskite crystals. Counterintuitively, water vapor permeating through the crosslinked matrix chemically passivates surface defects in the NPs and reduces nonradiative recombination. Green-emitting and white-emitting flexible large-area displays are demonstrated, which are stable for >400 d in air and in water. The high stability of the CPN in water enables biocompatible cell proliferation which is usually impossible when toxic Pb elements are present. The stable materials design strategies provide a breakthrough toward commercialization of perovskite NPs in displays and bio-related applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article